Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основы биохимии 6 страница




Абсолютная погрешность измерения – разность между значением величины, полученным при измерении и ее истинным значением, выражаемая в единицах измеряемой величины.

Выбор средств измерений.

Выбор измерительных средств зависит от масштаба производства. В опытном и мелкосерийном производстве применяют универсальные средства контроля и измерений. При крупносерийном и массовом производстве применяют специализированные средства.

При выборе измерительных средств необходимо учитывать допускаемую погрешность измерения , которая зависит от допуска Т на изготовление детали.

Для размеров до 500 мм установлены ряды погрешностей измерения для 2…17 квалитетов.

Пример. Необходимо выбрать измерительное средство для контроля вала Æ 40h6.

По справочнику определяем, что Т = 16 мм = 0,016 мм доп. погрешность зим. = 0,005 мм.

Тогда для контроля размера вала можно выбрать микрометр с диапазоном измерения 25…50 мм и допустимой погрешностью ±0,004 мм.

 

Учебное пособие для студентов заочной формы обучения

 

 

Кемерово, 2002

 

В В Е Д Е Н И Е

 

Биологическая химия (биохимия) - это наука о природе и свойствах веществ, входящих в состав живых организмов, путях биосинтеза и использования этих веществ различными организмами в процессе жизнедеятельности.

Как самостоятельная научная дисциплина и как отдельный предмет преподавания биохимия сложилась в середине ХIХ века на основе органической химии и физиологии, изучавшими с различных сторон вопросы химии жизни. Термин биохимия был введен К.Нейбергом в 1903 г.

В учебных целях биохимию принято делить на с т а т и ч е с к у ю и д и н а м и ч е с к у ю. Статическая биохимия изучает количественные соотношения, природу и свойства веществ, образующих живой организм. Этот раздел биохимии в значительной мере базируется на материале органической химии. Динамическая биохимия изучает все химические превращения вещества, происходящие в процессе жизнедеятельности организмов, и сопровождающие эти превращения изменения энергии. Статическая и динамическая биохимии тесно связаны между собой - нельзя понять биохимические процессы, идущие в живом организме, не зная его состава и химической природы образующих его веществ.

В зависимости от объекта или направления его исследования различают биохимию человека, биохимию животных, биохимию растений, биохимию микроорганизмов, техническую биохимию, радиационную биохимию и т. п.

Биохимия дает знания необходимые для решения многих задач в биологии, медицине, сельском хозяйстве, промышленности микробиологического синтеза, вопросах охраны окружающей среды, пищевой промышленности.

Существующая ныне теория “сбалансированного” пищевого рациона основана на исследованиях биохимии и физиологии роли белков, жиров, углеводов, витаминов, минеральных веществ в обмене у здорового человека в различных условиях труда и быта.

 

Глава I. ОБЩИЙ ХИМИЧЕСКИЙ СОСТАВ ЖИВЫХ

ОРГАНИЗМОВ. КЛЕТКА И ЕЕ СТРУКТУРЫ

 

Биомасса единовременно живущих на Земле организмов составляет в пересчете на сухое вещество 1,8-2,4·1012т. Эти организмы ежегодно продуцируют около 1011т сухого вещества.

Из общего числа известных химических элементов в организмах, составляющих биомассу Земли, обнаружено около 60; однако не все, входящие в это число химические элементы обязательно требуются каждому виду организмов.

По количественному содержанию все, встречающиеся в живом организме химические элементы делят на три группы: макроэлементы, массовая доля их в живом веществе превышает 10-3% (C, O, N,H, P, S, Ca,

Mg,K,Na,Cl,Fe), микроэлементы, массовая доля которых колеблется от 10-3 % до 10-6 % (Mn,Zn,Cu,B,Mo,Co и др.) и ультраэлементы, массовая доля которых не превышает 10-6 % (Hg,Au,U,Ra и др.) Из макроэлементов в живом веществе в наибольшем количестве содержатся C, O, N,H,P,S и Ca.

Многочисленные химические элементы, образующие живое вещество, присутствуют в нем в виде различных органических и неорганических соединений.

Органические соединения живого представлены молекулами белков, нуклеиновых кислот, липидов, углеводов, витаминов, гормонов, органических кислот и многими другими. Массовая доля органических соединений составляет: в животных организмах - 25 -30%, в семенах растений - 80 - 90%, в стеблях, листьях, плодах, овощах, фруктах - 5 -25%.

Неорганические соединения живого представлены водой и минеральными веществами.

Вода - один из широко распространенных компонентов живого. На долю ее в организме теплокровных животных приходится 65 - 70%, в растениях (листья, стебли, плоды, овощи, клубни, корни) - 75 - 95%, в покоящихся семенах растений - 5 - 15%. Вода играет огромную роль в создании условий для жизнедеятельности. Она основной участник всех физико-химических процессов организма, обеспечивающих функцио-нирование и возобновление живого.

Минеральные вещества в животных и растительных организмах могут быть в свободном (в виде ионов) и связанном состоянии. Массовая доля минеральных веществ составляет: в животном организме до 10%, в семенах растений - 2-5%, в стеблях, плодах, овощах, фруктах - 0,3 - 1%.

Наиболее разнообразными химическими компонентами живого являются различные по составу и сложности строения молекулы органических веществ, Причем более простые органические молекулы, называемые строителььными блоками (биомолекулами), связываясь ковалентно друг с другом, образуют более сложные органические соединения - макромолекулы. Каждый вид макромолекул имеет характерные для него строительные блоки. Макромолекулы с помощью относительно слабых межмолекулярных связей объединяются в надмолекулярные комплексы (ансамбли), которые объединяются в органеллы. В конечном итоге формируется главная единица живого - клетка. Таким образом в молекулярной организации клеток существует структурная иерархия (рис. 1.1). Переход от простых биомолекул к более сложным субклеточным структурам происходит скачкообразно.

 

СТРОИТЕЛЬНЫЕ БЛОКИ: аминокислоты, моносахара, аденин и

¯ др. основания, жирные кислоты, гли-

церин и т.п.

МАКРОМОЛЕКУЛЫ: белки, нуклеиновые кислоты, полиса-

¯ хариды

НАДМОЛЕКУЛЯРНЫЕ КОМПЛЕКСЫ (АНСАМБЛИ): мембра-

¯ ны, рибосомы, хроматин, микротру-

бочки

ОРГАНЕЛЛЫ: ядро, митохондрии,аппарат Гольджи,

¯ эндоплазматический ретикулум

КЛЕТКА.

Рис. 1.1. Структурная иерархия в молекулярной организации клеток (от простого к сложному)

 

Клетки - это структурные и функциональные единицы живых организмов. Диаметр клеток колеблется в пределах от 1-2 мкм у бактерий, до 20 - 30 мкм у животных. Такие размеры клеток определяются следующими условиями: минимальным числом необходимых для жизнедеятельности молекул; фиксированной величиной этих молекул, задаваемой размерами входящих в их состав атомов углерода, кислорода, водорода и азота; скоростью диффузии молекул, растворенных в водной среде клетки.

Клетка представляет собой самовоспроизводящуюся химическую систему. Стабильность этой системы обеспечена тем, что она физически отделена от своего окружения, обладает способностью поглощать из окружения требующиеся ей вещества и выводить наружу конечные продукты обмена. Роль барьера между данной химической системой и ее окружением выполняет плазматическая мембрана.

Отдельные биохимические реакции, протекающие в живых клетках локализованы в компартментах (“отсеках”). Например, синтез белка про-исходит в рибосомах, фотосинтез - в хлоропластах, получение энергии в легко используемой форме - в митохондриях. Вследствие компартментализации - пространственного разделения - биохимические реакции, зачастую противоположного характера, идут в клетке одновременно, не мешая друг другу.

Клетки живых организмов чрезвычайно разнообразны по структуре и химическим основам функционирования. Чтобы не рассматривать структуры и химическую основу всего многообразия клеток, ввели понятие “обобщенная клетка”, т.е. содержащая набор стуктур, обязательных для обмена веществ и энергии и самовоспроизводства. Идентифицировать одни клеточные структуры можно с помощью светового микроскопа при максимальном увеличении в 1500 раз, другие, более мелкие - при помощи электронного микроскопа.

Все клеточные структуры с позиции морфологии называют субклеточными, а с позиции химии - надмолекулярными. Четко очерченные структуры клеток называют органеллами (маленькими органами). Из известных клеточных структур одни имеются как в животных, так и в растительных клетках, другие - только в клетках растений.

На рис. 1.2 показаны схема и структуры, общие для животных и растительных клеток.

К л е т о ч н а я (п л а з м а т и ч е с к а я) мембрана (1) состоит из двух слоев белка, между которыми расположены два слоя ориентированных амфипатических молекул липидов (бислой). Она отделяет клеточное содержимое от внешней среды, регулирует обмен между клеткой и средой, делит внутреннее пространство клетки на отсеки (компартменты), предназначенные для конкретных химических процессов.

 

 
 

 

Рис.1. 2. Строение клетки

 

На мембране располагаются участки, улавливающие внешние стимулы (гормоны или другие химические вещества) и позволяющие клетке приспособиться к внешней среде, а также поддерживать связь с другими клетками.

Ц и т о п л а з м а (2) состоит из водянистого основного вещества и находящихся в нем разнообразных клеточных сруктур и различных включений (нерастворимые отходы обмена, запасные вещества). Жидкую часть цитоплазмы, заполняющую пространство между клеточными структурами, называют ц и т о з о л е м. Химическую основу цитозоля составляет вода с растворенными в ней солями, сахарами, аминокислотами, жирными кислотами, нуклеотидами, белками и рибонуклеиновыми кислотами (РНК). В цитозоле происходят некоторые химические процессы (гликолиз, синтез жирных кислот, нуклеатидов и некоторых аминокислот).

Я д р о (3) - крупная органелла, заключенная в оболочку из двух мембран, пронизанную порами. Ядро содержит хроматин, ядрышко и нуклеоплазму. Нуклеоплазма (ядерный сок) - это гелеобразная структура, в которой располагаются хроматин и одно или несколько ядрышек. Основу хроматина составляет комплекс дезоксирибонуклеиновой кислоты (ДНК) с белками. В ДНК хранится генетическая информация. В ядрышке происходит синтез рибосомной РНК и начинается сборка рибосом. Завершается эта сборка в цитоплазме. В ядрышке имеется хроматин.

Э н д о п л а з м а т и ч е с к и й р е т и к у л у м сокращенно ЭР (4), представляет обширную систему уплощенных мембранных мешочков - цистерн - в виде трубочек и пластинок. Образует единое целое с наружной мембраной ядерной оболочки (наружная мембрана ядерной оболочки непосредственно переходит в ЭР). Если цистерны ЭР покрыты рибосомами его называют ш е р о х о в а т ы м, если рибосомы отсутсвуют, то его называют г л а д к и м. По цистернам шероховатого ЭР транспортируются белки, синтезированные рибосомами на его поверхности. Гладкий ЭР служит местом синтеза липидов и стероидов.

А п п а р а т Г о л ь д ж и (5) представляет собой стопку уплощенных мембранных мешочков - цистерн - и связанную с ними систему пузырьков. На одном конце стопки мешочки непрерывно образуются - на другом отшнуровываются в виде пузырьков (пузырьки Гольджи). Многие клеточные продукты, например белки, поступают в аппарат Гольджи из эндоплазмического ретикулума, претерпевают в его цистернах модификацию (видоизменение) и в пузырьках транспортируются к нужному месту той же клетки, например в лизосомы или к плазматической мембране. Аппарат Гольджи участвует в выведении веществ из клетки наружу (секреции) и в образовании лизосом.

Л и з о с о м ы (6) - это простые сферической формы мембранные мешочки заполненные, в основном, гидролитическими ферментами. Содержимое лизосом имеет кислую реакцию. Стенка мешочка состоит из одинарной мембраны.

Лизосомы участвуют в переваривании поступившего в клетку извне материала и отслуживших свой срок клеточных сруктур, а также в саморазрушении клетки (автолизе), наступающем в результате высвобождения их содержимого.

Р и б о с о м ы (7) служат местом синтеза белка, представляют собой мелкие округлой формы органеллы, состоящие из двух субчастиц - большой и малой. Эти органеллы связаны с эндоплазматическим ретикулумом, а также свободно лежат в цитоплазме; обнаруживают их в митохондриях, ядре, хлоропластах (органеллы растений). Число рибосом в клетках бактерий достигает до 10 000; в клетках животных и растений - в несколько раз больше. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка.

М и т о х о н д р и и (8) - это органеллы клеток, имеющие различную форму и размеры. Митохондрии могут быть спиральными, округлыми вытянутыми, чашевидными. Длина митохондрии колеблется в пределах 1,5 - 10 мкм, а ширина - в пределах 0,25 - 1 мкм. Число митохондрий в клетке может колебаться от нескольких десятков до нескольких тысяч. Митохондрия окружена оболочкой, состоящей из двух мембран. Наружная мембрана гладкая, а внутренняя образует многочисленные гребневидные складки - кристы, направленные во внутреннюю полость митохондрии. Эта полость заполнена гелеобразной массой, называемой м а т р и к с о м. В матриксе находятся рибосомы, молекула ДНК и фосфатные гранулы. В кристах происходит синтез аденозинтрофосфата (АТФ) - универсального источника энергии для организма; в матриксе работают ферменты, участвующие в цикле Кребса и в окислении жирных кислот.

М и к р о т е л ь ц а (9) - это не совсем правильной сферической формы органеллы, окруженные одинарной мембраной. Все микротельца содержат каталазу - фермент, катализирующий расщепление пероксида водорода. У растений в микротельцах протекает глиоксилатный цикл.

В растительных клетках наряду с органеллами, обнаруживаемыми в клетках животных, имеются и свои особые структуры.

К л е т о ч н а я с т е н к а - это окружающая клетку жесткая структура, расположенная снаружи клеточной мембраны. Она обеспечивает клетке механическую опору и защиту. Химическую основу клеточной стенки составляют полисахариды - целлюлоза, пектиновые вещества, гемицеллюлозы. В клеточной стенке имеются поры, выстланные клеточной мембраной. По клеточной стенке происходит передвижение воды и минеральных солей.

Х л о р о п л а с т представляет собой крупную, содержащую хлорофилл пластиду (органеллу растительной клетки), в которой протекает фотосинтез. На рис. 1.3 показана схема хлоропласта. Хлоропласт окружен оболочкой из двойной мембраны (1) и заполнен студенистой массой - с т р о м о й (2). В строме находится система мембран, собранных в стопки, или граны (3). Кроме того строма содержит рибосомы, молеклу ДНК и капельки масла; в ней может откладываться крахмал.

 
 

Рис.1.3. Хлоропласт

 

К р у п н а я ц е н т р а л ь н а я в а к у о л ь - это мешок, образованный одинарной мембраной, называемой т о н о п л а с т о м. Вакуоль заполнена клеточным соком - представляющим концентрированный раствор различных веществ (минеральные соли, сахара, пигменты, органические кислоты, ферменты и другие соединения.

 

Глава 2. БЕЛКОВЫЕ ВЕЩЕСТВА

2.1. Общая характеристика белков

Белки, или протеины (греч. протос - первый, важнейший, главный) -высокомолекулярные органические полимеры, построенные из остатков a-аминокислот. Массовая доля белков в пересчете на сухое вещество в среднем составляет в организме животных 40 - 50%, в семенах растений - 10 - 35 %.

Независимо от источников получения белки содержат при пересчете на сухое вещество (в %) углерода 50-55, кислорода 21-24, азота 15-18, водорода 6,5 - 7,3, серы 0,3 - 2,5, фосфора 0 -2, золы 0 - 0,5.

Б е л к и - важнейшие вещества, входящие в состав живых систем. Они обладают многими свойствами и функциями, отсутствующими у других органических соединений.

С т р о и т е л ь н а я (с т р у к т у р н а я) ф у н к ц и я. Белки образуют основу цитоплазмы любой живой клетки, с липидами создают структуру всех клеточных мембран и органелл.

К а т а л и т и ч е с к а я ф у н к ц и я. Все катализаторы биохимических реакций, называемые ферментами, по своей химической природе являются белками. Эта функция белков является уникальной, не свойственной другим полимерным соединениям.

Д в и г а т е л ь н а я ф у н к ц и я. Любые формы движения в живой природе (сокращение и расслабление мышц, движение ресничек и жгутиков у простейших, движение протоплазмы в клетке и т.д.) осуществляется белковыми веществами клеток.

Т р а н с п о р т н а я ф у н к ц и я. В крови имеются белки, которые могут связывать и переносить определенные молекулы или ионы из одного органа в другой. В клеточных мембранах присутствует тип белков, способных связывать многие вещества и переносить их через мемрану.

З а щ и т н а я ф у н к ц и я. Многие белки защищают организм от вторжения других организмов или предохраняют его от повреждений. Антитела, образующиеся в организме - это специфические белки, обладающие способностью распозанавать проникшие в организм бактерии, чужеродные белки, токсины, а затем обезвреживать их. Белки, участвующие в процессе свертывания крови, предохраняют организм от потери крови при повреждении кровеносных сосудов. Токсические белки (змеиные яды, токсины бактерий, токсичные белки

растений), по-видимому, также выполняют защитные функции.

Р е г у л я т о р н а я ф у н к ц и я. Некоторые белки участвуют в регуляции обмена веществ в организме. Одни из регуляторных белков вырабатываются железами внутренней секреции животных и носят название гормонов. Каждый из белков-гормонов регулирует какую-либо из сторон обмена веществ, например, обмен глюкозы, транспорт ионов кальция и фосфора. Другие регуляторные белки, называемые репрессорами, регулируют биосинтез ферментов в бактериальных клетках. К регуляторным белкам можно отнести белковые ингибиторы ферментов.

З а п а с н а я (п и щ е в а я) ф у н к ц и я. Семена многих растений образуют запасы белков, потребляемые как питательные вещества на первых стадиях развития зародыша. Пищевые белки имеются в яйце птиц, молоке и т.д.

Перечисленные функции белков не охватывают все их многообразие. Можно указать и на другие функции белков, в частности, участие их в размножении, поддержании онкотического давления, реакциях “узнавания”, поведенческих реакциях человека и животных.

Белки - это органические соединения, в состав которых входит азот. Массовая доля азота в белке зависит от вида биологического объекта и составляет в белках животных тканей 16 %, молока (казеин) - 15,65%, зерна пшеницы, ржи, ячменя, овса - 17,54%, зерна кукурузы и грчихи - 16,67%. По содержанию азота (определяемому, как правило, методом Кьельдаля) высчитывают массовую долю белка в биологических объектах и продуктах, используя коэффициенты пересчета.

 

2.2. Аминокислоты - структурные элементы белков

2.2.1. Определение и стереохимия аминокислот

Аминокислоты - это органические соединения, в молекуле которых одновременно присутствуют основная аминогруппа (-NH2) и кислая карбоксильная группа (-СООН).

Из белков при помощи гидролиза выделено 20 аминокислот, которые представляют собой карбоновые кислоты, замещенные в a-положении (или в положении 2) аминогруппой и имеют следующую общую формулу:

СООН Буквой R обозначена боковая группа (R -

½ группа). Каждая a -аминокислота имеет

NH2 ¾ С ¾ H свою характерную для нее R -группу.

½

R

Аминокислоты, входящие в состав белков, называют с т а н д а р т н ы м и, о с н о в н ы м и или н о р м а л ь н ы м и. Каждая из них имеет тривиальное (традиционное) название и трехбуквенное условное обозначение (см. классификацию аминокислот). Все стандартные аминокислоты, кроме глицина, содержат а с и м м е т р и ч н ы й атом углерода в a-положении (атом углерода, с которым связаны четыре разные замещающие группы) и, следовательно, оптически активны. Они способны вращать плоскость поляризованного луча в разные стороны, существовать в виде пары энантиомеров - D и L (молекул, имеющих несовместимые друг с другом зеркальные изображения).

Заглавные буквы D и L указывают на конфигурацию молекулы. Если аминогруппа расположена справа от оси СООН ¾R, то это D-аминокислота, если находится слева от оси СООН¾R, то L-аминокислота:

СООН COOH

½ ½

NH2 ¾ C ¾ H H ¾ C ¾ NH2

½ ½

R R

L-аминокислота D -аминокислота

Направление вращения плоскости поляризации света обозначают знаком (+) - вращение вправо (по часовой стрелке) и знаком (-) - вращение влево (против часовой стрелки):

СООН COOH

½ ½

NH2 ¾ C ¾ H H ¾ C ¾ NH2

½ ½

R R

L (-) - серин D (+) - серин

Знак и величина оптического вращения зависят от природы растворителя, реакции среды, наличия в растворе солей и от природы боковой цепи (R - группы).

Следует отметить, что знак оптической активности можно не указывать.

В состав белков входят только аминокислоты L - ряда. При гидролизе белков в мягких условиях аминокислоты сохраняют свою оптическую активность. Аминокислоты, присутствующие в организме животных и растений в свободном виде также принадлежат к L - ряду. D-аминокислоты встречаются в природе очень редко и обнаружены в составе некоторых микроорганизмов и пептидных антибиотиков.

 

2.2.2. Физико-химические свойства аминокислот

Аминокислоты представляют собой белые кристаллические вещества хорошо растворимые (за некоторым исключением) в воде, аммиаке и других полярных растворителях; в неполярных и слабополярных растворителях (метанол, этанол, ацетон) растворяются плохо.

В водных растворах все a-аминокислоты существуют в виде биполярных ионов (цвиттер-ионов) с диссоциированной карбоксильной группой и протонированной аминогруппой:

СООН COO-

½ + ½

NH2 ¾ C ¾ H NH3 ¾ C ¾ H

½ ½

R R

В зависимости от рН среды аминокислоты могут быть в форме катионов, анионов, электронейтральных биполярных ионов или смеси этих форм, одна из которых обычно доминирует. Аминокислоты - амфотерные соединения; в сильнокислых растворителях имеют положительный заряд, в щелочных - отрицательный заряд:

 

СООН COO- COO-

+ ½ +Н+ + ½ +ОН- ½

NH3 ¾C¾H ¬¾ NH3 ¾ C ¾ H ¾® NH2 ¾ C ¾ H + H2O

½ ½ ½

R R R

 

Значение рН среды, при которой аминокислоты электронейтральны, называется изоэлектрической точкой.

Вследствие амфотерности аминокислоты в зависимости от состава раствора могут реагировать с кислотами и основаниями, образуя соответствующие соли:

 

СООН COONa

- + ½ ½

Cl NH3 ¾C¾H NH2 ¾ C ¾ H

½ ½

R R

Cолянокислая соль Натриевая соль

Благодаря амфотерности аминокислоты являются буферными веществами, выполняющими важную функцию регулирования рН в организме.

Аминокислоты могут вступать в реакцию как по карбоксильной группе, так и по аминогруппе.

При взаимодействии аминокислот с формальдегидом образуются метиленовые соединения, представляющие собой кислоты, которые можно титровать щелочью:

О

R¾ CH¾ COOH + H¾ С R¾ CH¾ COOH + H2O

½ Н ½

NH2 N= CH2

 

 

R¾ CH¾ COOH + NaOH R¾ CH¾ COONa + H2O

½ ½

N= CH2 N= CH2

Эта реакция лежит в основе метода формольного титрования при количественном определении аминокислот по Серенсену.

Все a-аминокислоты реагируют с нингидрином (трикетогидринден-гидратом) с образованием продукта, окрашенного в сине-фиолетовый цвет (см. практикум по биохимии). Эта реакция применяется для точного определения очень маленьких количеств аминокислот.

Карбоксильная группа аминокислот может реагировать со спиртами, образуя сложные эфиры:

 

 

О

R¾ CH¾ COOH + СН3 OH ¾® R¾ CH¾ C¾O¾ СН3 + H2O

½ ½

2 NH2

Эту реакцию используют для разделения и определения аминокислот путем фракционной перегонки их эфиров в вакууме.

Аминокислоты могут вступать в реакцию с соединениями, содержащими карбонильную группу (>С=О), например с восстанавливающими сахарами и альдегидами.

В результате этой реакции из аминокислты образуются соответствующий альдегид, аммиак и диоксид углерода, а из сахара фурфурол или оксиметилфурфурол. Образующиеся альдегиды обладают определенным запахом, от которого зависит аромат пищевых продуктов. Фурфурол и оксиметилфурфурол легко вступают в соединение с аминокислотами, образуя темноокрашенные соединения - м е л а н о и д и н ы. Особенно интенсивна реакция между аминокислотами и восстанавливающими сахарами происходит при повышенных температурах, имеющих место при сушке овощей, фруктов, молока и солода, при упаривании сахарных сиропов, выпечке хлеба и изготовлении кондитерских изделий, самосогревании зерна, обработке вина теплом.

Реакция образования меланоидинов может происходить при взаимодействии сахаров с белками.

 

2.2.3. Строение и классификация аминокислот

К настоящему времени описано около 200 природных аминокислот, выделенных из животного и растительного материала. Все природные аминокислоты делят на две группы: п р о т е и н о г е н н ы е, или белковые (обнаружены только в белках) и н е п р о т е и н о г е н н ы е, или небелковые (в белках не обнаружены).

 

2.2.3.1. Протеиногенные аминокислоты

Аминокислоты, обнаруженные в белках, можно классифицировать по разным признакам. По строению боковой цепи (R-группы) различают алифатические, ароматические и гетероциклические аминокислоты, по числу аминных и карбоксильных групп - моноаминомонокарбоновые (одна NH2-группа и одна СООН-группа), диаминомонокарбоновые (две NH2 -группы и одна СООН-группа), моноаминодикарбоновые (одна NH2 -группа и две СООН-группы), по положению изоэлектрической точки - нейтральные, основные и кислые. Аминокислоты, содержащие в радикалах ОН - группы, называют гидроксиаминокислотами, а содержащие серу - серосодержащими кислотами. По способности к синтезу в животном организме биохимики делят аминокислоты на заменимые и незаменимые. Аминокислоты, содержащие NH-группы вместо NH2 - групп, называют иминокислотами.

По полярности R-групп, т.е. способности R-групп к взаимодействию с водой при соответствующих внутриклеточных условиях рН (рН вблизи 7,0), аминокислоты делят на четыре группы: с неполярными или гидрофобными R-группами, полярными, но не заряженными R-группами, отрицательно заряженными R-группами и положительно заряженными R-группами. Рассмотрим строение аминокислот этих групп.

А м и н о к и с л о т ы с н е п о л я р н ы м и (гидрофобными) R-г р у п п а м и. Эти аминокислоты, по сравнению с другими аминокислотами, медленно растворяются в воде; их R-группы представляют собой углеводороды, и, следовательно, гидрофобны. При растворении в воде диссоциируют только аминная и карбоксильная группы расположенные у a-углеродного атома.

В эту группу входят восемь аминокислот:

1.NH2-CH-COOH 2. NH2-CH-COOH

½ ½

CH3 CH-CH3

½

Аланин, ала (a-амино- CH3

пропионовая кислота) Валин, вал (a-амино-b-метил-

масляная кислота)

 

3. NH2-CH-COOH 4. NH2-CH-COOH




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 325; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.108 сек.