Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Органические вещества. Аминокислоты. Белки




 

Органические вещества. В состав живых организмов, кроме неорганических, входят также разнообразные органические вещества. Органические вещества живых существ образованы, прежде всего, четырьмя химическими элементами, называемыми биогенными: углеродом, водородом, кислородом и азотом. В составе белков к этим элементам прибавляется сера, а в нуклеиновых кислотах – фосфор.

Многообразие органических веществ в значительной степени определяется углеродом. Этот элемент благодаря уникальным свойствам составляет химическую основу жизни. Он может образовывать ковалентные связи со многими атомами и их группами, образуя цепочки, кольца, составляющие скелет различных по составу, строению, длине и форме органических молекул. Из них в свою очередь, образуются сложные химические соединения, различающиеся по строению и функциям. Основная причина разнообразия органических молекул – это не столько отличие составляющих их атомов, сколько различный порядок их размещения в молекуле.

Понятие о биополимерах. В живом организме органические вещества представлены либо небольшими, с относительно низкой молекулярной массой молекулами, либо крупными макромолекулами. К низкомолекулярным соединениям относятся аминокислоты, сахара, органические кислоты, спирты, витамины и др.

Белки, полисахариды и нуклеи­новые кислоты в большинстве своем являются структурами с большой молекулярной массой. Поэтому их называют макромолекулами (от греч. макрос – большой). Так, молекулярная масса большинства белков составляет от 5000 до 1 000000. [BЭ18] Высокомолекулярные органические соединения – белки, нуклеиновые кислоты, полисахариды, молекулы которых состоят из большого количества одинаковых или разных по химическому строению повторяющихся звеньев, называются биополимерами (от греч. биос – жизнь и полис – многочисленный). Простые молекулы, из остатков которых состоят биополимеры, называются мономерами. Мономерами белков являются аминокислоты, полисахаридов – моносахариды, нуклеиновых кислот – нуклеотиды. Макромолекулы составляют около 90 % сухой массы клетки.

В этой главе рас­смотрены все три класса макромолекул и их мономерные звенья. К рассмотрению до­бавлены липиды — молекулы, как правило, зна­чительно более мелкие, чем биополимеры, но также выполняющие функции в организме. [VV19]

Особую группу органических веществ составляют биологически активные вещества: ферменты, гор­моны, витамины и др. Они разнообразны по строению; влияют на обмен веществ и превращение энергии.

В клетках различных групп организмов содержа­ние определенных органических соединений разное. Например, в клетках животных преобладают белки и жиры, а в клетках растений — углеводы. Однако в различных клетках определенные органиче­ские соединения выполняют схожие функции.

Белки. В живых организмах среди макромолекул по своему функциональному значению ведущая роль принадлежат белкам. Белки во многих организмах преобладают и количественно. Так, в организме животных они составляют 40–50 %, в организме растений – 20 – 35 % их сухой массы. Белки – это гетерополимеры, мономерами которых являются аминокислоты.

Аминокислоты – «кирпичики» белковых молекул. Аминокислоты – органические соединения, содержащие одновременно аминогруппу (–NН), для которой характерны основные свойства, и карбоксильную группу (–СООН) с кислотными свойствами. Аминогруппа и карбоксильная группы связаны с одним и тем же атомом углерода (рис.). По этому признаку все аминокислоты сходны между собой. У большей части белокобразующих аминокислот имеется одна карбоксильная груп­па и одна аминогруппа; эти ами­нокислоты называются нейтраль­ными.

Часть молекулы, называемой радикалом (R) у разных аминокислот имеет различное строение (рис.). Радикал у разных аминокислот может быть неполярным или полярным (заряженным или незаряженным), гидрофобным или гидрофильным, что и придает белкам определенные свойства. Помимо нейтральных, существуют ос­новные аминокислоты — с более чем одной аминогруппой, а также кислые аминокислоты — с более чем одной карбоксильной группой. Наличие дополнительной амино- или гидроксильной группы оказывает влияние на свойства радикала. Все свойства радикалов аминокислот играют определяющую роль в формировании пространственной структуры белка.

Общее число известных аминокислот около 200, а в образовании природных белков участвует только 20 видовт. Такие аминокислоты называются белокобразующими (таблица 2; в таблице приведены полное и сокращенное названия аминокислот, не для запоминания).

Таблица 2. Основные аминокислоты и их сокращенное обозначение[VV20]

Название аминокислоты Символ Название аминокислоты Символ
Аланин Аргинин Аспарагин Аспарагиновая кислота Валин Гистидин Глицин Глутамин Глутаминовая кислота Изолейцин Ала Арг Асн Асп Вал Гис Гли Глн Глу Иле   Лейцин Лизин Метионин Пролин Серин Тирозин Треонин Триптофан Фенилаланин Цистеин Лей Лиз Мет Про Сер Тир Тре Три Фен Цис

 

Растения и бактерии могут синтезировать все необходимые им аминокислоты из первичных продуктов фотосинтеза. Человек и животные не способ­ны синтезировать все аминокислоты, поэтому так называемые незаменимые аминокислоты они должны полу­чать в готовом виде вместе с пищей.

Незаменимыми аминокислотами для человека являются: лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан и метионин; для де­тей незаменимыми являются так­же аргинин и гистидин. Белки пищи, содержащие все незаменимые аминокислоты, называются полноценными, в отличие от неполноценных, в которых отсутствуют те или иные незаменимые аминокислоты.

Наличие в одной аминокислоте и основной, и кислотной групп обусловливает их амфотерность и высокую реактивность. Аминогруппа

(–NH2) одной аминокислоты способна взаимодействовать с карбоксильной группой (–СООН) другой аминокислоты с выделением молекулы воды. Образующаяся при этом молекула представляет собой дипептид (рис.), а связь –СО—NН– называется пеп­тид­ной. На одном конце молекулы дипептида находится свободная аминогруппа, а на другом карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много амино­кислот (более десяти), то образуется длинная цепь – полипептид.

Пептиды играют важную роль в организме. Многие олиго- и полипептиды являются гормонами, антибиотиками, токсинами.

К олигопептидам относятся, например, гормоны гипофиза окситоцин и вазопрессин, а также брадикинин (пеп­тид боли) и некоторые опиаты («есте­ственные наркотики» человека), выпол­няющие функцию обезболивания. Регулярное[VV21] употребление Употребление наркотиков очень опасно, оно разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает сильную боль — «ломку». К олигопептидам от­носятся некоторые антибиотики, напри­мер, грамицидин S.

Гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (грамицидин А), токсины (дифтерийный токсин) также являются полипептидами.

Полипептидные цепи бывают очень длинными и включают самые различные комбинации аминокислот. По­липептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислотных остатков с молекулярной массой свыше 6000[BЭ22], называются белками.

Каждый конкретный белок характеризуется строго постоянным соста­вом и по­следовательностью аминокислотных остатков.

Уровни организации белковой молекулы. Молекулы белков могут принимать различные пространственные формы конформации, которые представляют собой четыре уровня их организации (рис.)

Це­поч­ка из множества ами­но­кис­лот­ных ос­тат­ков, соединенных пептидными связями пред­став­ля­ет со­бой пер­вич­ную струк­ту­ру бел­ко­вой мо­ле­ку­лы. Эт­о наи­бо­лее важ­ная струк­ту­ра, так как она определяет его форму, свойства и функции. На ос­но­ве первичной структуры соз­да­ют­ся дру­гие ви­ды струк­ту­р. Именно эта структура закодирована в молекуле ДНК. Каждый индивидуальный белок организма имеет уникальную первичную структуру. Все молекулы конкретного индивидуального[VV23] белка (например, альбумина) имеют одинаковое чередование аминокислотных остатков, отличающее альбумин от любого другого индивидуального белка. Мно­го­об­ра­зие пер­вич­ной струк­ту­ры оп­ре­де­ля­ет­ся составом, ко­ли­че­ст­вом и по­ряд­ком сле­до­ва­ния ами­но­кис­лотных остатков в по­ли­пеп­тид­ной це­пи.

Вторичная структура белков возникает в результате образования водородных связей между атомом водорода NH-груп­п и атомом кислорода CO-груп­п разных аминокислотных остатков полипептидной цепи. По­ли­пеп­тид­ная цепь при этом за­кру­чи­ва­ет­ся в спи­раль. Хотя водородные связи слабые, но благодаря значительному количеству они обеспечивают стабильность этой структуры. Полностью спиральную конфигурацию имеют молекулы белка кератина. Это структурный белок волос, шерсти, когтей, перьев и рогов; он входит в состав наружного слоя кожи позвоночных. Помимо кератина спиральная вторичная структура характерна для фибриллярных (нитевидных) белков, таких как миозин, фибриноген, коллаген.

Вторичная структура белка, помимо спирали, может быть представлена складчатым слоем. В складчатом слое несколько полипептидных цепей (или участков одной полипептидной цепи) лежат параллельно, образуя плоскую конфигурацию, сложенную наподобие гармошки (рис. б6). Вторичную структуру в форме складчатого слоя имеет, например, белок фиброин, составляющий основную массу шелкового волокна, выделяемого шелкоотделительными железами гусеницы шелкопряда при сплетении коконов.

Тре­тич­ная струк­ту­ра соз­да­ет­ся S—S свя­зя­ми («ди­суль­фид­ны­ми мос­ти­ка­ми») ме­ж­ду ос­тат­ка­ми цис­теи­на (ами­но­кис­ло­та, со­дер­жа­щая се­ру), а так­же во­до­род­ны­ми, ион­ны­ми и другими[VV24] взаи­мо­дей­ст­вия­ми. Тре­тич­ной струк­­ту­рой оп­ре­де­ля­ют­ся спе­ци­фич­ность бел­ко­вых мо­ле­кул, их био­ло­ги­че­ская ак­тив­ность. Третичную структуру имеют такие белки, как миоглобин[VV25] (белок, находящийся в мышцах; участвует в создании запасов кислорода), трипсин (фермент, расщепляющий белки в кишечнике).

В не­ко­то­рых слу­ча­ях не­сколь­ко по­ли­пеп­тид­ных це­пей с тре­тич­ной структурой объ­е­ди­ня­ют­ся в еди­ный ком­плекс, при этом об­ра­зу­ет­ся чет­вер­тич­­ная струк­ту­ра. В ней бел­ко­вые субъ­­е­ди­ни­цы не свя­за­ны ко­ва­лент­но, а проч­ность обес­пе­чи­ва­ет­ся взаи­мо­дей­ст­ви­ем сла­бых меж­мо­ле­ку­ляр­­ных сил. Например, чет­вер­тич­ная струк­ту­ра характерна для бел­ка ге­мо­гло­бина, со­стоя­щего их четырех бел­ко­вых субъ­­еди­ниц и не­бел­ко­вой час­ти — ге­ма.

s 1. Что такое белки? 2. Каково строение белков? 3. Что такое аминокислоты? 4. Каким образом аминокислоты соединяются в полипептидную цепь? 5. Какие уровни структур­ной организации белков существуют? 6. Какие химические связи обусловливают различные уровни структурной организации белковых молекул? 7. Имеется три вида аминокислот А.В.С. Сколько вариантов полипептидных цепей, состоящих из пяти аминокислот, можно построить? Будут ли полипептиды обладать одинаковыми свойствами?

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 2764; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.