Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 9: закономерности действия экологических факторов

Факторы среды имеют количественное выражение (рисунок 6). По отношению к каждому фактору можно выделить зону оптимума (зону нормальной жизнедеятельности), зону пессимума (зону угнетения) и пределы выносливости организма. Оптимум — такое количество экологического фактора, при котором интенсивность жизнедеятельности организмов максимальна. В зоне пессимума жизнедеятельность организмов угнетена. За пределами выносливости существование организма невозможно. Различают нижний и верхний предел выносливости.

Рисунок 6: Зависимость действия экологического фактора от его действия

 

Способность живых организмов переносить количественные колебания действия экологического фактора в той или иной степени называется экологической валентностью (толерантностью, устойчивостью, пластичностью). Виды с широкой зоной толерантности называются эврибионтными, с узкой — стенобионтными (рисунок 7 и рисунок 8).

 

 

 

Рисунок 7: Экологическая валентность (пластичность) видов:

1- эврибионтные; 2 - стенобионтные

Рисунок 8: Экологическая валентность (пластичность) видов

(по Ю.Одуму)

 

Организмы, переносящие значительные колебания температуры, называются эвритермные, а приспособленные к узкому интервалу температур — стенотермные. Таким же образом по отношению к давлению различают эври- и стенобатныеорганизмы, по отношению к степени засоления среды - эври - и стеногалинные и т.д.

Экологические валентности отдельных индивидуумов несовпадают. Поэтому экологическая валентность вида шире экологической валентности каждой отдельной особи.

Экологические валентности вида к разным экологическим факторам могут существенно отличаться. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида.

Экологический фактор, количественное значение которого выходит за пределы выносливости вида, называется лимитирующий (ограничивающий) фактор. Такой фактор будет ограничивать распространение вида даже в том случае, если все остальные факторы будут благоприятными. Лимитирующие факторы определяют географический ареал вида. Знание человеком лимитирующих факторов для того или иного вида организмов позволяет, изменяя условия среды обитания, либо подавлять, либо стимулировать его развитие.

Можно выделить основные закономерности действия экологических факторов:

закон относительности действия экологического фактора направление и интенсивность действия экологического фактора зависят от того, в каких количествах он берется и в сочетании с какими другими факторами действует. Не бывает абсолютно полезных или вредных экологических факторов: все дело в количестве. Например, если температура окружающей среды слишком низкая или слишком высокая, т.е. выходит за пределы выносливости живых организмов, это для них плохо. Благоприятными являются только оптимальные значения. При этом экологические факторы нельзя рассматривать в отрыве друг от друга. Например, если организм испытывает дефицит воды, то ему труднее переносить высокую температуру;

закон относительной заменяемости и абсолютной незаменимости экологических факторов — абсолютное отсутствие какого-либо из обязательных условий жизни заменить другими экологическими факторами невозможно, но недостаток или избыток одних экологических факторов может быть возмещен действием других экологических факторов. Например, полное (абсолютное) отсутствие воды нельзя компенсировать другими экологическими факторами. Однако если другие экологические факторы находятся в оптимуме, то перенести недостаток воды легче, чем когда и другие факторы находятся в недостатке или избытке.

 

ТЕМА 10: КЛАССИФИКАЦИЯ ЭКОСИСТЕМ.

Экосистема — это любая совокупность взаимодействующих живых организмов и условий среды. Термин «экосистема» ввел английский фитоценолог А. Тенсли в 1935 г. Экосистемами являются, например, участок леса, река, море, аквариум, кабина космического корабля, географический ландшафт или даже вся биосфера.

Экологи используют также термин «биогеоценоз», предложенный советским ботаником В. Н. Сукачевым. Этим термином обозначается совокупность растений, животных, микроорганизмов, почвы и атмосферы на однородном участке суши. Биогеоценоз является синонимом экосистемы.

Между экосистемами, как и между биогеоценозами, обычно нет четких границ, и одна экосистема постепенно переходит в другую. Большие экосистемы состоят из экосистем меньшего размера.

Самой большой экосистемой является биосфера — оболочка планеты, заселенная живыми организмами. Толщина биосферы немногим больше 20 км (организмы обитают над поверхностью суши не выше 6 км над уровнем моря, опускаются не глубже 15 км в толщу суши и на 11 км в глубь океана), но основная масса живого вещества сконцентрирована в приповерхностном слое толщиной 50 - 100 м — это высота лесного полога и глубина проникновения основной массы корней. В этих же границах сконцентрированы наземные и почвенные животные и микроорганизмы. В океане наиболее обжиты растениями и животными освещаемые солнцем и прогреваемые до глубины 10 - 20 м приповерхностные толщи воды. В этом тонком слое биосферы сконцентрировано более 90% биомассы растений и животных

По сравнению с диаметром Земли (13 тыс. км) биосфера — тонкая пленка.

Учение о биосфере создал русский ученый В. И. Вернадский. Он доказал, что живые организмы за 4 млрд. лет существования их на Земле произвели огромные преобразования. В атмосфере появился кислород, раковины моллюсков и фораминифер образовали осадочные горные породы. Под влиянием жизнедеятельности организмов в биосфере постоянно происходил и происходит круговорот воды, кислорода, углерода азота и других веществ.

При незначительном вмешательстве человека в экосистемы биосфера сохраняет свое равновесие. Однако усиливающееся влияние человека на природу, например, вырубка лесов, которые выделяют кислород и испаряют много воды, сжигание больших количеств содержащего углерод топлива с выделением углекислого газа, уменьшение испарения с поверхности океана из-за загрязнения нефтью — все это нарушает круговороты веществ и приводит к глобальному ухудшению состояния биосферы.

В экосистемах устанавливается постоянный баланс процессов синтеза и распада органических веществ, который под воздействием внешних факторов приспосабливается путем перестройки или разрушается. В этом случае наступает экологический кризис.

Искусственно создаваемые экосистемы обеспечивают непрерывный процесс обмена веществ и энергии как внутри природы, так и между ней и человеком. В зависимости от воздействия хозяйственной деятельности человека эти системы подразделяются на:

естественные, сохранившиеся в неприкосновенности;

модифицированные, изменившиеся от деятельности человека;

трансформированные, преобразованные человеком. Итак, в экосистеме происходит взаимодействие жизненного сообщества, состоящего из множества организмов, с характерными факторами среды, действующими на это сообщество. Экосистемы классифицируют обычно по наиболее важным факторам среды. Так, выделяют морские, наземные или сухопутные, береговые или литоральные, озерные или лимнические экосистемы и др.

Как построена экосистема? Как правило, она состоит из четырех основных элементов (рисунок 9).

1. Неживая (абиотическая) среда — это вода, минеральные вещества, газы, а также неживые органические вещества и гумус.

2. Продуценты (производители) — живые существа, способные из неорганических материалов среды строить органические вещества. Такую работу выполняют главным образом зеленые растения, производящие с помощью солнечной энергии из углекислого газа, воды и минеральных веществ органические соединения. Этот процесс называют фотосинтезом. При нем высвобождается кислород. Органические вещества, производимые растениями, идут в пищу животным и человеку, кислород используется для дыхания.

3. Консументы — потребители растительной продукции. Организмы, питающиеся только растениями, называют консументами первого порядка. Животных, питающихся только (или преимущественно) мясом, называют консументами второго порядка.

4. Редуценты (деструкторы, разлагатели) — группа организмов, которые разлагают остатки отмерших существ, например, растительные остатки или трупы животных, превращая их снова в исходное сырье (вода, минеральные вещества и углекислый газ), пригодное для продуцентов, превращающих эти составные части снова в органические вещества. К редуцентам относятся многие черви, личинки насекомых и другие мелкие почвенные организмы. Бактерии, грибы и другие микроорганизмы, превращающие живое вещество в минеральное, называют минерализаторами.

Как отмечалось ранее, экосистема может быть и искусственной. Примером такой экосистемы, крайне упрощенной и не - полной по сравнению с естественной, является космический корабль. Его пилоту в течение длительного времени приходится жить в замкнутом пространстве корабля, обходясь ограниченными запасами пищи, кислорода и энергии. При этом по возможности желательно восстанавливать и вторично использовать израсходованные запасы вещества и отходы. Для этого в космическом корабле предусмотрены специальные установки регенерации, а в последнее время ведутся опыты и с живыми организмами (растениями и животными), которые должны участвовать в переработке отходов жизнедеятельности космонавта, используя энергию солнечного света.

Сравним искусственную экосистему космического корабля с какой-либо естественной, например, с экосистемой пруда. Наблюдения показывают, что количество организмов в этом биотопе остается (с некоторыми сезонными колебаниями) в основном постоянным. Такую экосистему называют стабильной. Равновесие сохраняется до тех пор, пока не изменятся внешние факторы. Основные из них — приток и отток воды, поступление различных питательных веществ, солнечное излучение. В экосистеме пруда живут различные организмы. Так, после создания искусственного водохранилища оно постепенно заселяется бактериями, планктоном, затем рыбами и высшими растениями. Когда развитие достигло определенной вершины и внешние воздействия остаются долгое время неизменными (приток воды, веществ, излучения, с одной стороны, и отток или испарение, вынос веществ и отток энергии — с другой), экосистема пруда стабилизируется. Между живыми существами устанавливается равновесие.

Как и упрощенная искусственная экосистема космического корабля, экосистема пруда способна к самоподдержанию. Неограниченному росту препятствуют взаимодействия между растениями-продуцентами, с одной стороны, животными и растениями (консументами и редуцентами) — с другой. Консументы могут размножаться лишь до тех пор, пока они не перерасходуют запас имеющихся питательных веществ. Если их размножение окажется чрезмерным, то рост их численности прекратится, так как им не хватит пищи. Продуцентам в свою очередь постоянно требуются минеральные вещества. Они же вновь пускают в оборот отходы жизнедеятельности. Таким образом, возобновляется круговорот: растения (продуценты) поглощают эти минеральные вещества и с помощью солнечной энергии воспроизводят из них богатые энергией питательные вещества.

 

Рисунок 9: Экологическая пирамида (биомасс) и трофические уровни в экосистеме. Пирамида на рисунке перевернута.

 

Природа действует в высшей степени экономно. Созданная организмами биомасса (вещество их тел) и содержащаяся в ней энергия передаются остальным членам экосистемы: животные питаются растениями, хищные животные поедают первых, человек употребляет в пищу растения и животных. Этот процесс называют пищевой цепью.

Примеры пищевых цепей: растения — растительноядные животные — хищник; злак — полевая мышь — лиса; кормовые растения — корова — человек. Как правило, каждый вид питается не одним-единственным видом. Поэтому пищевые цепи переплетаются, образуя пищевую сеть. Чем сильнее организмы связаны между собой пищевыми сетями и другими взаимодействиями, тем устойчивее сообщество против возможных нарушений. Естественные, ненарушенные экосистемы стремятся к равновесию. Состояние равновесия основано на взаимодействии биотических и абиотических факторов среды.

Поддержание замкнутых круговоротов в естественных экосистемах возможно благодаря наличию редуцентов, которые используют все отходы и остатки, и постоянному поступлению солнечной энергии. В городских и искусственных экосистемах редуценты отсутствуют или их количество ничтожно мало, поэтому отходы (жидкие, твердые и газообразные) накапливаются, загрязняя окружающую среду. Для быстрейшего разложения и вторичного использования таких отходов создают условия для развития редуцентов, например, путем компостирования. Так человек учится у природы.

В отношении поступления энергии природные и антропогенные (созданные человеком) экосистемы сходны. И природным, и искусственным (дома, города, системы транспорта) экосистемам требуется подвод энергии извне. Но естественные экосистемы получают энергию от практически вечного источника — Солнца, которое к тому же, «производя» энергию, не загрязняет окружающую среду. Человек, напротив, питает процессы производства и потребления в основном за счет конечных источников энергии — угля и нефти, которые наряду с энергией выделяют пыль, газы, тепловые и другие отходы, наносящие вред окружающей среде и не поддающиеся переработке внутри самой искусственной экосистемы. Не следует забывать, что потребление даже такой «чистой» энергии, как электрическая (если она произведена на тепловой электростанции), приводит к загрязнению воздуха и тепловому загрязнению среды.

 

ТЕМА 11: КЛАССИФИКАЦИЯ ПРИРОДНЫХ РЕСУРСОВ.

Природные ресурсы — это различные тела и силы природы. Они могут выступать в роли средств труда, источников сырья, энергии, материалов и в качестве предметов потребления. В основу их классификации положены три признака.

Первый — по источникам происхождения: биологические, минеральные и энергетические.

Второй признак — по использованию в качестве производственных ресурсов: земельный фонд; лесной фонд; водные ресурсы; гидроэнергетические ресурсы; обитатели вод, лесов, степей (фауна); полезные ископаемые. Последние подразделяются на рудные, топливно-энергетические ресурсы, запасы минерально-химического сырья, редких металлов промышленного назначения и строительных материалов.

Третий признак — по степени истощаемости ресурсов:

• неисчерпаемые — атмосферный воздух, осадки, солнечная радиация, энергия ветра, энергия морских приливов и отливов, энергия земных недр;

• исчерпаемые — расходуются при использовании человеком и в дальнейшем исчезают; они подразделяются на возобновляемые и невозобновляемые (рисунок 10).

 

 

Рисунок 10: Природные ресурсы

Биологические (леса, растения, животные) являются возобновляемыми ресурсами, если деятельность человека не лишила их необходимых условий к размножению и воспроизводству численности.

Большинство минеральных ресурсов относится к невозобновляемым. Это — руды, глины, пески, нефть, газ, редкоземельные элементы и т.д.

Природные ресурсы можно различать также по степени возместимости. Например, могут быть открыты новые месторождения полезных ископаемых, найдены новые экземпляры растений. Имеют место заменяемые природные ресурсы, когда один источник энергии может быть заменен другим, например, нефть — углем или ядерным «горючим». Большое значение для развития производства имеет различие степени изученности природных ресурсов, например, количество и содержание полезных компонентов в залежах полезных ископаемых, структура почвы, запасы древесины разных видов и возрастов.

Разведанные запасы отдельных металлов (рис. 11) обеспечивают потребление на 50, 100, 500 лет и более (соответственно нефть, руды цветных и черных металлов, уголь). Учитывая, что ежедневно в разных частях мира геологи открывают новые месторождения (ежегодный прирост минеральных ресурсов отдельных видов составляет больше, чем их добыча), можно смотреть с оптимизмом на перспективу обеспечения сырьевыми ресурсами, несмотря на резкий рост потребления минерального сырья. (В 1913 г. на одного жителя Земли добывалось 5 т минерального сырья, в 1940 г. — 7,4, в 1960 г. — 14,3, а в конце 80-х гг. — около 30 т.)

Основная масса минерально-сырьевых ресурсов содержится в земной коре, составляя 0,4% общей массы Земли. Континентальная кора, в которой добывается преобладающая часть полезных ископаемых, составляет 0,29% массы Земли. Бытующее мнение об опасности минерально-сырьевого кризиса сильно преувеличено, так как человечество в перспективе может эксплуатировать бедные руды и неперспективные на сегодняшний день отдельные месторождения полезных ископаемых.

 

 

Рисунок 11: Обеспеченность стран мира разведанными запасами полезных ископаемых

В таблице 2 приведены возможные сроки добычи известных (разведанных) и конечных запасов 11 минералов до их исчер­пания в земной коре на глубине до 1 км. Как видно из таблицы, конечные запасы по некоторым видам в 2 раза (уголь), по дру­гим — в 9—11 раз (молибден, золото), по третьим — в сотни (сера, уран) и тысячи раз (алюминий) превосходят известные ресурсы, и сроки их исчезновения составляют сотни и тысячи лет. И это не предел.

 

Таблица 2:

Сопоставление возможных сроков добычи различных полезных ископаемых, годы

 

Полезные ископаемые Известные (разведанные) запасы по отношению к годовому потреблению Конечные запасы по отношению к годовому потреблению
Уголь Медь Железо Фосфор Молибден Свинец Цинк Сера Уран Алюминий Золото    

 

Конечные запасы составляют около 0,01% общего наличия соответствующих элементов в земной коре. Сроки их исчезновения измеряются миллионами лет (например, железа — 1815·106, меди — 242·106, урана — 1855·106, алюминия — 33,5·109), если исходить из современного годового потребления при условии, что затраты на извлечение этих элементов не имеют значения. (Так, известно, что в гидросфере Земли растворено около 6 млрд. т золота, но извлечение его настолько дорого, что не имеет экономического смысла.)

Геологические достоверные запасы нефти составляют 127 млрд. т (в пересчете на условное топливо — т.у.т.) и вероятные — 360 млрд. т.у.т., а запасы природного газа — 540 трлн. м3 (при добыче в мире 1,7 трлн. м3 в год).

Надо не забывать об открытии новых месторождений, о возможности использования изверженных пород как источника сырья. В 100 т изверженных пород в среднем содержится (т): алюминия — 8, железа — 5, титана — 0,46, хрома — 0,028, ванадия — 0,012 и свинца — 0,0025.

Мы мало знаем о минеральных ресурсах на глубине 2 - 5 км от земной поверхности. Единственная скважина на Земле пробурена немногим глубже, чем на 12 км — на Кольском полуострове.

Одна из причин поддержания жизни на Земле — преобладание моря над сушей. Мировой океан, взаимодействуя с атмосферой и сушей, в состоянии поддерживать жизнь в течение 3 млрд. лет. Он стабилизирует окружающую среду на поверхности Земли.

 

<== предыдущая лекция | следующая лекция ==>
Тема 8: адаптации организмов к внешней среде | Тема 12: возникновение экологических кризисов в истории человечества в результате нерационального природопользования
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1631; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.