Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Точки во внешнем силовом поле

Сопоставим каждой точке поля консервативных сил значение некоторой функции координат Ер(x,y,z), которую определим следующим образом. Произвольно выбранной точке О припишем значение функции Ер0, взятое также произвольно. Значение функции в любой другой точке В положим равным сумме Ер0 и работы АВ0, совершаемой силами поля при перемещении частицы из точки В в точку О:

ЕрВр0В0 (5.6)

Поскольку работа АВ0 не зависит от пути, значения функции ЕР во всех точках поля определяются однозначно. Функция (5.6) имеет, как и кинетическая энергия Ек, размерность работы и называется потенциальной энергией частицы во внешнем силовом поле.

Образуем разность значений потенциальной энергии для точек 1 и 2 (рис.5.5). Согласно формуле (5.6)

Ер1р2=(Ер010)-(Ер020)=А10201002

(мы воспользовались тем, что А20=-А02). Правая часть полученного соотношения дает работу, совершаемую над частицей силами поля на пути из точки 1 в точку 2, проходящем через точку О. Вследствие независимости работы от формы пути такая же работа А12 совершается на любом другом пути. Следовательно, мы приходим к выводу, что работа консервативных сил равна разности значений функции Ер в начальной и конечной точках пути, т.е. убыли потенциальной энергии:

А12р1р2. (5.7)

Из (5.6) следует, что потенциальная энергия определяется с точностью до неизвестной аддитивной постоянной Ер0. Однако это не имеет никакого значения, так как во все физические соотношения входит либо разность значений потенциальной энергии в двух точках, либо производная функции Ер по координатам.

Ранее мы нашли, что работа силы тяжести равна

А12=mgh1-mgh2 (5.8)

Сопоставление формул (5.6) и (5.7) дает, что потенциальная энергия частицы массы m в поле сил тяжести определяется выражением

Ер=mgh, (5.9)

где h отсчитывается от произвольного уровня.

В отличие от кинетической энергии, которая всегда положительна, потенциальная энергия может быть как положительной, так и отрицательной. Если, например, h отсчитывать от поверхности Земли, то потенциальная энергия частицы, лежащей на дне ямы глубины l, будет равна –mgl (подчеркнем, что l>0, ибо глубина, как и длина, не может быть отрицательной).

Пусть частица движется в поле консервативных сил. При переходе из точки 1 в точку 2 над ней совершается работа (5.5). В соответствии с формулой (4.) эта работа равна приращению кинетической энергии частицы. Приравняв оба выражения для работы, получим соотношение Ер1р2к2к1, из которого следует, что

Ек1р1к2р2. (5.10)

Величина Е, равная сумме кинетической и потенциальной энергий, называется полной механической энергией частицы. Формула (5.10) означает, что Е12, т.е. что полная механическая энергия частицы, движущейся в поле консервативных сил, остается постоянной. Это утверждение выражает закон сохранения механической энергии для системы, состоящей из одной частицы.

В случае поля силы тяжести полная энергия определяется выражением

Е= (5.11)

Кинетическая и потенциальная энергии могут переходить друг в друга. Однако, если на частицу не действуют никакие силы, кроме обусловивших потенциальную энергию консервативных сил, полная энергия остается постоянной. Пусть частица свободно падает с высоты h. Первоначально ее кинетическая энергия равна нулю, а потенциальная энергия равна mgh. Формулы кинематики дают для скорости в конце падения значение v=Следовательно, в конце падения кинетическая энергия частицы равна

Ек=

Потенциальная же энергия в конце падения равна нулю. Таким образом, потенциальная энергия превратилась в эквивалентное количество кинетической энергии.

Если известно выражение Ер(x,y,z) для потенциальной энергии, можно найти силу, действующую на частицу в каждой точке поля. Пусть частица переместилась параллельно оси х, вследствие чего координата х получила приращение dx. При этом силы поля совершают над частицей работу dA= F d s =Fxdsx; в данном случае dsy и dsz равны нулю. Проекция перемещения ds на ось х равна dx; поэтому dA=Fxdx. Вместе с тем согласно формуле (3.30) эта работа равна убыли потенциальной энергии: dA=-dEp. Приравняв оба выражения для работы, найдем, что Fxdx=-dEp, откуда

Fx=-.

Мы написали д Ер/ д х вместо dEp/dx, чтобы отметить то обстоятельство, что производная по х вычисляется при условии, что координаты y и z остаются постоянными. Производная, вычисленная при этом условии, называется частной. Таким образом, компонента силы по оси х равна взятой с обратным знаком частной производной потенциальной энергии по переменной х. Для компонент силы по осям y и z получаются аналогичные выражения. Следовательно. Мы приходим к соотношениям

Fx=- Fy=- Fz=- (5.12)

Учитывая, что сумма произведений компонент силы на соответствующие орты координатных осей дает вектор силы:

F =Fx e x+Fy e y+Fz e z=- (5.13)

Вектор с компонентами где j - скалярная функция координат х, у, z, называется градиентом функции j и обозначается символом grad j:

grad j= e x+ e y e z. (5.14)

Направление вектора grad j совпадает с направлением оси l, вдоль которой функция j возрастает с наибольшей скоростью, а модуль равен dj/dl, т.е. скорости возрастания функции j при перемещении вдоль оси l. В этом проще всего убедиться на примере функции, зависящей только от одной координаты, скажем х. Для такой функции

grad j= e x

В этом случае осью l является ось х, если dj/dx>0, либо ось, противоположная оси х, если dj/dl<0. Модуль же grad j равен I dj/dx I, т.е. dj/dl.

Выражение (3.37) можно рассматривать как результат действия на функцию j оператора

е х е у е z, (5.15)

который называется оператором Гамильтона или оператором набла. Поэтому градиент функции j можно представить в виде j:

grad jºj.

Из сравнения выражений (5.13) и (5.14) заключаеи, что

F =-grad Ep, или F =-Ep. (5.16)

Таким образом, консервативная сила равна градиенту потенциальной энергии частицы, взятому с обратным знаком.

Если система состоит из N не взимодействующих друг с другом частиц, находящихся в поле внешних консервативных сил, то потенциальная энергия этой системы равна сумме потенциальных энергий отдельных частиц:

Ер= (5.17)

Здесь Ерi – потенциальная энергия i – й частицы. Функция Ер зависит от координат всех N частиц. Сила F i, действующая на i – ю частицу, равна -Ерi.

 

<== предыдущая лекция | следующая лекция ==>
Потенциальная энергия материальной | Потенциальная энергия взаимодействия
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 275; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.