Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Экстремумы функции многих переменных

Определим понятие экстремума для функции многих переменных.

Функция многих переменных f(X) имеет в точке Х(0) максимум (минимум), если найдется такая окрестность этой точки, что для всех точек Х из этой окрестности выполняются неравенства f(X) f(X(0)) ().

Если эти неравенства выполняются, как строгие, то экстремум называется сильным, а если нет, то слабым.

Заметим, что определенный таким образом экстремум носит локальный характер, так как эти неравенства выполняются лишь для некоторой окрестности точки экстремума.

 

Необходимым условием локального экстремума дифференцируемой функции z = f(х1,..., хn) в точке является равенство нулю всех частных производных первого порядка в этой точке: .

Точки, в которых выполняются эти равенства, называются стационарными.

 

По-другому необходимое условие экстремума можно сформулировать так: в точке экстремума градиент равен нулю. Можно доказать и более общее утверждение - в точке экстремума обращаются в ноль производные функции по всем направлениям.

 

Стационарные точки должны быть подвергнуты дополнительным исследованиям - выполняются ли достаточные условия существования локального экстремума. Для этого определяют знак дифференциала второго порядка. Если при любых , не равных одновременно нулю, он всегда отрицателен (положителен), то функция имеет максимум (минимум). Если может обращаться в ноль не только при нулевых приращениях, то вопрос об экстремуме остается открытым. Если может принимать как положительные, так и отрицательные значения, то экстремума в стационарной точке нет.

В общем случае определение знака дифференциала представляет собой достаточно сложную проблему, которую здесь рассматривать не будем. Для функции двух переменных можно доказать, что если в стационарной точке, то экстремум присутствует. При этом знак второго дифференциала совпадает со знаком , т.е. если , то это максимум, а если , то это минимум. Если , то экстремума в этой точке нет, а если , то вопрос об экстремуме остается открытым.

 

Пример 1. Найти экстремумы функции .

Найдем частные производные методом логарифмического дифференцирования.

ln z = ln 2 + ln (x + y) + ln (1 + xy) – ln (1 + x2) – ln (1 + y2)

Аналогично.

Найдем стационарные точки из системы уравнений:

Таким образом, найдены четыре стационарные точки (1; 1), (1; -1),
(-1; 1) и (-1; -1).

Найдем частные производные второго порядка:

ln (z x `) = ln 2 + ln (1 - x2) -2ln (1 + x2)

 

Аналогично; .

Так как , знак выражения зависит только от . Отметим, что в обеих этих производных знаменатель всегда положителен, поэтому можно рассматривать только знак числителя,или даже знак выражений х(х2 – 3)и y(y2 – 3). Определим его в каждой критической точке и проверим выполнение достаточного условия экстремума.

Для точки (1; 1) получим 1*(12 – 3) = -2 < 0. Т.к. произведение двух отрицательных чисел > 0, а < 0, в точке (1; 1) можно найти максимум. Он равен = 2*(1 + 1)*(1 +1*1)/((1 +12)*(1 +12)) =
= 8/4 = 2.

Для точки (1; -1) получим 1*(12 – 3) = -2 < 0 и (-1)*((-1)2 – 3) = 2 > 0. Т.к. произведение этих чисел < 0, в этой точке экстремума нет. Аналогично можно показать, что нет экстремума в точке (-1; 1).

Для точки (-1; -1) получим (-1)*((-1)2 – 3) = 2 > 0. Т.к. произведение двух положительных чисел > 0, а > 0, в точке (-1; -1) можно найти минимум. Он равен 2*((-1) + (-1))*(1 +(-1)*(-1))/((1 +(-1)2)*(1 +(-1)2)) = -8/4 =
= -2.

 

Найти глобальный максимум или минимум (наибольшее или наименьшее значение функции) несколько сложнее, чем локальный экстремум, так как эти значения могут достигаться не только в стационарных точках, но и на границе области определения. Исследовать поведение функции на границе этой области не всегда легко.

 

<== предыдущая лекция | следующая лекция ==>
Градиент функции | Выпуклость функции многих переменных
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 306; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.