Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элексир долголетия 8 страница

 

Проблема определения атомных масс

 

Главное затруднение при определении атомной массы состоит в том, что необходимо установить число атомов каждого элемента, входящее в состав соединения. Дальтон был вынужден сделать допущение о том, что атомы разных элементов при образовании сложных атомов соединяются по "принципу максимальной простоты". Суть принципа заключается в следующем: если имеется лишь одно бинарное соединение двух элементов, то его молекула (сложный атом) образована одним атомом одного элемента и одним атомом другого (сложный атом является двойным в терминологии Дальтона). Тройные и более сложные атомы образуются лишь в том случае, когда имеются несколько соединений, образованных двумя элементами. Отсюда Дальтон предполагал, что молекула воды состоит из одного атома кислорода и одного атома водорода. Результатом являлось заниженное значение атомного веса кислорода, что вело, в свою очередь, к неправильному определению атомных весов металлов на основании состава оксидов. Принцип наибольшей простоты (подкреплённый авторитетом Дальтона как создателя атомно-молекулярной теории) сыграл в дальнейшем определённую негативную роль при решении проблемы атомных весов. Однако в целом атомистическая теория Дальтона составила основу всего дальнейшего развития естествознания.

 

Решению проблемы атомных весов способствовало открытие ещё целого ряда стехиометрических законов.

 

Закон объёмных отношений (закон соединения газов) открыл французский химик Жозеф Луи Гей-Люссак. Гей-Люссак в 1808 г. показал, что газы всегда соединяются в простых объёмных соотношениях.

 

Амедео Авогадро ди Кваренья выдвинул в 1811 г. предположение, получившее название гипотезы (закона) Авогадро: "Равные объёмы газов при одинаковых давлении и температуре содержат одинаковое число молекул, так что плотность газов служит мерой массы их молекул и отношение объёмов при соединении суть не что иное, как отношение между числом молекул, соединяющихся между собой при образовании сложной молекулы". При выводе своего закона Авогадро использовал закон Гей-Люссака и результаты исследования электролиза воды, которое провели в 1800 г. два английских химика – Уильям Николсон и Энтони Карлайл. Николсон и Карлайл обнаружили, что объёмы выделяющихся при электролизе водорода и кислорода относятся как 2:1. Следствием из гипотезы Авогадро являлось предположение о том, что газообразные водород, кислород, азот и хлор состоят из двухатомных молекул; однако этот вывод вызвал резкие возражения. Предположение о том, что корпускулы элементарных субстанций являются сложными, казалось химикам противоречащим здравому смыслу. Молекулярная гипотеза Авогадро не была принята большинством физиков и химиков 1-й половины XIX в., которые не смогли отчётливо понять различия между атомом и молекулой. Тем не менее, в середине XIX века метод определения молекулярных масс по плотности паров получил широкое распространение.

 

Изучив составленные Дальтоном таблицы атомных весов, английский химик Уильям Праут высказал в 1815-1816 гг. предположение о том, что атомные веса всех элементов должны быть целочисленны и кратны атомному весу водорода. Причина этого, по мнению Праута, состоит в том, что именно водород – основа всех остальных элементов (протил, своего рода аналог первичной материи античных философов). Впрочем, эта точка зрения, известная как гипотеза Праута, хотя и произвела значительное впечатление на современников, не получила широкого признания вследствие явных противоречий с опытными данными.

 

Закон удельных теплоёмкостей открыли в 1819 г. французские учёные Пьер Луи Дюлонг и Алексис Терез Пти. Дюлонг и Пти показали, что удельная теплоёмкость твёрдых элементов (точнее говоря, простых веществ в твёрдом состоянии) обратно пропорциональна атомному весу; метод Дюлонга-Пти, позволял, таким образом, определять атомные веса некоторых элементов.

 

Немецкий химик Эйльгард Мичерлих в 1819 г. нашёл, что соединения, образованные одинаковым количеством атомов, обладают одинаковой кристаллической формой и способны образовывать смешанные кристаллы. Закон изоморфизма Мичерлиха позволил экспериментаторам делать выводы о числе атомов, образующих молекулу соединения и, следовательно, определять атомные массы элементов.

 

Огромный вклад в развитие химической атомистики и в решение проблемы атомных весов внёс шведский химик Йёнс Якоб Берцелиус. С 1807 г. он занялся систематическим изучением элементного состава соединений, представив огромное количество доказательств в пользу закона постоянства состава. В 1814 г. Берцелиус опубликовал первую таблицу атомных весов, в которой были приведены атомные веса 41 элемента (для составления таблицы Берцелиусу потребовалось определить состав почти 2 000 соединений!). В основу своей шкалы атомных весов Берцелиус положил атомный вес кислорода, принятый равным 100. Для определения атомных весов Берцелиус также был вынужден сделать ряд допущений (в частности, сильные основания должны были иметь состав RO2), в результате чего атомные веса ряда элементов были определены неверно.

 

В 1814 г. Берцелиус подробно изложил также систему химических знаков, основанную на обозначении элементов одной или двумя буквами латинского названия элемента; число атомов элемента предлагалось указывать надстрочными цифровыми индексами (принятое в настоящее время указание числа атомов подстрочными цифрами предложил в 1834 г. Юстус Либих). Система химических знаков Берцелиуса, альтернативная крайне неудобной системе Дальтона, получила всеобщее признание и сохранилась до настоящего времени.

 

В дальнейшем Берцелиус продолжал работы по уточнению и исправлению атомных весов элементов, используя для этой цели законы Мичерлиха, Гей-Люссака, Дюлонга и Пти (не воспользовавшись, однако, гипотезой Авогадро; Берцелиус считал, что в равных объёмах газов содержится одинаковое число атомов.). Новые, всё более точные таблицы атомных весов Берцелиуса выходят в 1818 и 1826 годах. В последней таблице значительные ошибки имеют место лишь для атомных весов некоторых металлов.

 

 

Тем не менее, в первой половине XIX века продолжала существовать путаница в понятиях атом, молекула и эквивалент (и, разумеется, соответствующих массах). Авогадро, в противовес Дальтону и Берцелиусу, отрицающим существование двухатомных молекул элементарных газов, развивал свою молекулярную теорию, органично дополнявшую атомистику Дальтона. В 1821 г. Авогадро опубликовал работу, где привёл правильные формулы ряда соединений (например, для оксида бора – B2O3 вместо BO2 по Берцелиусу, и т.п.) и предложил свою таблицу атомных весов. Впрочем, несмотря на преимущества теории Авогадро, его таблица содержала много ошибочных данных (см. табл.).

 

Путанице в химической теории способствовало и учение об эквивалентах, которое развивал английский учёный Уильям Гайд Волластон. В работе "Синоптическая шкала химических эквивалентов" (1814) Волластон привёл таблицу эквивалентных масс элементов, которые большей частью совпадали с величинами атомных весов по Дальтону. Однако Волластон противопоставлял понятие "эквивалент" дальтоновскому понятию "атом". Многим химикам эквивалентные (соединительные) веса, казались более удобными и точными, чем атомные, поскольку они рассчитываются без принятых Дальтоном допущений. В 30-е годы XIX века учение об эквивалентах получило поддержку со сторону физиков – Майкл Фарадей открыл законы электролиза и экспериментально установил значения электрохимических эквивалентов.

 

В результате широчайшего распространения "Руководства по теоретической химии" (1817-1819), которое написал немецкий учёный Леопольд Гмелин, учение о соединительных весах получило почти всеобщее признание среди химиков-неоргаников. Гмелин принимал атомную массу кислорода равной 8, а не 16, как у Берцелиуса; "исправлению" подверглись и атомные массы ряда других элементов. Печальным следствием стал тот факт, что, например, для уксусной кислоты химиками в 30-40-е годы XIX века предлагалось 19 различных брутто-формул!

 

Попытки чётко разделить понятия предприняли в 40-е годы химики-органики. Шарль Жерар и Огюст Лоран развили идеи Авогадро, настаивая на необходимости установления чёткого различия между понятиями "атом", "молекула" и эквивалент".

 

Окончательную ясность в атомно-молекулярную теорию внёс Международный конгресс химиков, собравшийся 3 сентября 1860 года в Карлсруэ. Новую систему понятий, основанную на идеях Авогадро, изложил в своём докладе итальянский химик Станислао Канниццаро. Конгресс в Карлсруэ ознаменовал долгожданное решение проблемы атомных весов, чётко разграничив понятия "атом", "молекула" и "эквивалент"; понятие "эквивалент" было решено считать чисто эмпирическим и не зависящим от понятий "атом" и "молекула". Определения атомных масс химических элементов, которые выполнил в первой половине 1860-х годов бельгийских химик Жан Серве Стас, до конца XIX века считались наиболее точными.

 

Реформа Канниццаро завершила период, основным содержанием которого явилось установление количественных законов. Решения конгресса в Карлсруэ оказали большое влияние на дальнейшее развитие химии, сделав возможными последовавшие вскоре систематизацию химических элементов и создание периодического учения.

 

Электрохимические теории сродства

 

Создание Дальтоном атомной теории вновь поставило "проклятый вопрос атомизма" – вопрос о способе соединения атомов. Алессандро Вольта в 1800 г. представил доказательство несомненной связи между химическими реакциями и электричеством в виде первой электрической батареи ("Вольтов столб"). Последовавшие за этим блестящие успехи применения электричества в химии (разложение воды, выделение щелочных и щелочноземельных металлов) способствовали всеобщему убеждению естествоиспытателей в том, что силы, соединяющие атомы, должны иметь электрическую природу.

 

Первую электрохимическую теорию химического сродства предложил в 1807 г. английский учёный Гэмфри Дэви. Основные идеи теории состояли в следующем:

 

1. Атомы, способные соединяться химически, приобретают при контакте противоположные заряды;

 

2. Акт химической реакции представляет собой соединение атомов за счёт сил электростатического притяжения, при котором происходит компенсация зарядов;

 

3. Химическое сродство атомов пропорционально их полярности (величине возникающего заряда).

 

4. Если подействовать на соединение электричеством, атомы восстанавливают полярность и движутся к электродам.

 

Развивая представления Дэви, Й. Я. Берцелиус разработал в 1811-1818 гг. собственную электрохимическую теорию сродства. На основании изучения продуктов разложения солей, кислот и оснований, выделяющихся на электродах, Берцелиус создал весьма простую и наглядную дуалистическую систему:

 

1. Все атомы (простые и сложные) электрически заряжены и биполярны; при этом один из зарядов преобладает;

 

2. Соединение атомов сопровождается частичной нейтрализацией их зарядов;

 

3. При пропускании электрического тока атомы восстанавливают начальную полярность;

 

4. Химическое сродство пропорционально полярности веществ и температуре.

 

Все элементы Берцелиус расположил в ряд по знаку и величине присущего их атомам заряда. В начале электрохимического ряда располагался абсолютно электроотрицательный кислород, далее – электроотрицательные элементы (неметаллы) и переходный (индифферентный) элемент водород (оксид которого – ни кислота, ни основание). За водородом следовали переменные (одни оксиды которых – кислоты, другие – основания) и электроположительные элементы (щелочные и щелочноземельные металлы).

 

Кроме электрохимического ряда элементов, имелся и электрохимический ряд сложных атомов оксидов, в котором кислоты (кислотные оксиды по современной классификации) являлись электроотрицательными, а основания – электроположительными.

 

Все химические реакции сводились, таким образом, к взаимодействию зарядов. Берцелиус писал: "Сернокислый натрий составлен не из серы, кислорода и натрия, а из серной кислоты и натра, которые, в свою очередь, могут быть разделены на электроположительную и электротрицательную части". Учитывая, что под термином "серная кислота" Берцелиус, в соответствие с теорией кислот Лавуазье, подразумевает оксид серы SO3, образование сульфата натрия можно описать следующей схемой:

 

Для объяснения образования гидратных соединений Берцелиус предполагал, что вода может быть либо электроположительной, либо электроотрицательной частью соединения:

 

Несмотря на присущие недостатки, дуалистическая теория Берцелиуса (кстати, очень хорошо согласующаяся с представлениями Лавуазье о природе солей, кислот и оснований) весьма удачно объясняла многие реакции между неорганическими веществами. Положение о том, что молекула химического соединения построена из радикалов, способных к самостоятельному существованию, оказало существенное влияние на развитие теорий структурной химии. Отголоски электрохимических представлений Берцелиуса нетрудно найти в современной теоретической неорганической химии (электроотрицательность, поляризуемость и поляризующее действие ионов и т.п.). В XIX веке система Берцелиуса несколько десятилетий представляла собой одну из теоретических основ химии.

 

5. ПЕРИОД КЛАССИЧЕСКОЙ ХИМИИ

 

 

5.1. ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

 

Первые попытки систематизации - Таблица Ньюлендса - Таблица Мейера - Таблица Менделеева - Развитие Периодического закона

 

Первые попытки систематизации элементов

 

Одной из важнейших проблем теоретической химии XIX века после разрешения проблемы атомных весов оставалась систематизация химических элементов, число которых постоянно росло. Со времён античности и средних веков были известны 14 элементов (хотя собственно элементами их стали считать лишь в конце XVIII века). В XVIII веке к ним добавилось 20 новых элементов; к 1860 году число известных элементов возросло до шестидесяти. Проблема упорядочения элементов и отыскания закономерности в изменении их свойств становилась всё более актуальной.

 

Первую попытку систематизации элементов предпринял немецкий химик Иоганн Вольфганг Дёберейнер, сформулировавший в 1829 г. закон триад. Дёберейнер обратил внимание на то, что в рядах сходных по свойствам элементов наблюдается закономерное изменение атомной массы. В выделенных Дёберейнером триадах элементов атомный вес среднего элемента триады примерно равен полусумме атомных весов двух крайних элементов:

 

 

Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, тем не менее, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в порядке возрастания их атомных весов.

 

В 1843 г. Леопольд Гмелин привёл таблицу химически сходных элементов, расставленных по группам в порядке возрастания "соединительных масс". Вне групп элементов, вверху таблицы, Гмелин поместил три "базисных" элемента – кислород, азот и водород. Под ними были расставлены триады, а также тетрады и пентады (группы из четырех и пяти элементов), причём под кислородом расположены группы металлоидов (по терминологии Берцелиуса), т.е. электроотрицательных элементов; электроположительные и электроотрицательные свойства групп элементов плавно изменялись сверху вниз.

 

Важным этапом систематизации элементов стали т.н. дифференциальные системы, направленные на выявление общих закономерностей в изменении атомного веса элементов. В 1850 г. немецкий врач Макс фон Петтенкофер попытался найти у элементов соотношения, подобные тем, что обнаруживаются в гомологических рядах, т.е. в рядах соединений, отличающихся друг от друга группой CH2. Он указал, что атомные веса некоторых элементов отличаются друг от друга на величину, кратную восьми. На этом основании Петтенкофер высказал предположение, что элементы, возможно, являются сложными образованиями каких-то субэлементарных частиц. На следующий год подобные соображения высказал и французский химик-органик Жан Батист Андрэ Дюма. В 1859 г. эту идею детально разработал немецкий учёный Адольф Штреккер; несколько вариантов таблиц предложил в 1857-1868 гг. английский химик Уильям Одлинг.

 

 

Винтовой график Шанкуртуа, 1862 г.

 

 

Александр Эмиль Бегуйе де Шанкуртуа в 1862 г. предложил винтовой график элементов, расположенных в порядке возрастания атомных весов – т. н. "земная спираль" (vis tellurique). Шанкуртуа нанёс на боковую поверхность цилиндра, размеченную на 16 частей, линию под углом 45°, на которой поместил точки, соответствующие элементам. Таким образом, элементы, атомные веса которых отличались на 16, или на число, кратное 16, располагались на одной вертикальной линии. При этом точки, отвечающие сходным по свойствам элементам, часто оказываются на одной прямой. Винтовой график Шанкуртуа фиксировал закономерные отношения между атомными массами элементов, однако данная система не могла быть признана удовлетворительной.

 

Джон Александр Рейна Ньюлендс в 1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав. Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Такая зависимость действительно имеет место для лёгких элементов, однако Ньюлендс пытается придать ей всеобщий характер. В таблице Ньюлендса сходные элементы располагались в горизонтальных рядах; однако, в одном и том же ряду часто оказывались и элементы совершенно непохожие. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица Ньюлендса не содержит свободных мест. Вследствие присущих системе Ньюлендса недостатков современники отнеслись к закону октав чрезвычайно скептически.

 

Зависимость атомного объёма от атомной массы элемента

 

 

В марте 1869 г. русский химик Дмитрий Иванович Менделеев представил Русскому химическому обществу периодический закон химических элементов, изложенный в нескольких основных положениях:

 

1. Элементы, расположенные по возрастанию их атомного веса, представляют явственную периодичность свойств;

 

2. Сходные по свойствам элементы имеют или близкие атомные веса (Os, Ir, Pt), или последовательно и однообразно увеличивающиеся (K, Rb, Cs);

 

3. Сопоставление элементов или их групп по величине атомного веса отвечает их т.н. валентности;

 

4. Элементы с малыми атомными весами имеют наиболее резко выраженные свойства, поэтому они являются типическими элементами;

 

5. Величина атомного веса элемента может быть иногда исправлена, если знать аналоги данного элемента;

 

6. Следует ожидать открытия ещё многих неизвестных элементов, например, сходных с Al или Si, с паем (атомной массой) 65-75.

 

В том же 1869 г. вышло и первое издание учебника "Основы химии", в котором была приведена периодическая таблица Менделеева.

 

Первая таблица Менделеева (1869).

 

H = 1

 

 

Ti = 50

V = 51

Cr = 52

Mn = 55

Fe = 56

Co = Ni = 59

Cu = 63.4

Zr = 90

Nb = 94

Mo = 96

Rh = 104.4

Ru = 104.4

Pd = 106.6

Ag = 108

? = 180

Ta = 182

W = 186

Pt = 197.4

Ir = 198

Os = 199

Hg = 200

 

 

Be = 9.4

Mg = 24

Zn = 65.2

Cd = 112

 

B = 11

Al = 27.4

? = 68

Ur = 116

Au = 197

 

 

C = 12

Si = 28

? = 70

Sn = 118

 

N = 14

P = 31

As = 75

Sb = 122

Bi = 210

 

 

O = 16

S = 32

Se = 79.4

Te = 128?

 

F = 19

Cl = 35.5

Br = 80

J = 127

 

 

Li = 7

Na = 23

K = 39

Ca = 40

? = 45

?Er = 56

?Yt = 60

?In = 75.6

Rb = 85.4

Sr = 87.6

Ce = 92

La = 94

Di = 95

Th = 118?

Cs = 133

Ba = 137

Tl = 204

Pb = 207

 

 

В конце 1870 г. Менделеев доложил РХО статью "Естественная система элементов и применение её к указанию свойств неоткрытых элементов", в котором предсказал свойства неоткрытых ещё элементов – аналогов бора, алюминия и кремния (соответственно экабор, экаалюминий и экасилиций).

 

 

Расположение в периодической таблице элементов, известных в 1870 г. Зелёным цветом показаны ячейки, соответствующие элементам, свойства которых предсказывал Д. И. Менделеев

 

 

В 1871 г. Менделеев в итоговой статье "Периодическая законность химических элементов" дал формулировку Периодического закона: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса. Тогда же Менделеев придал своей периодической таблице классический вид (т. н. короткая таблица).

 

В связи с периодической таблицей химических элементов иногда поднимается вопрос о приоритете. Здесь следует чётко отделять периодическую таблицу и периодический закон химических элементов. В таблицах Одлинга 1864 г., Менделеева 1869 г. и Мейера 1870 г. нельзя не отметить несомненного сходства; во всех таблицах оставлены места для неоткрытых элементов, и все они не лишены недостатков. Работа Мейера была сдана в печать в 1869 г.; после опубликования доклада Менделеева Мейер добавил в свою статью ссылку на Менделеева, где, в частности, особо указал, что предлагаемый им график прекрасно иллюстрирует предложенный русским химиком термин "периодичность". Таким образом, поскольку Менделеев и Мейер независимо друг от друга предложили весьма близкие варианты таблицы, используемое в некоторых странах название "таблица Менделеева-Мейера" можно считать не лишённым оснований.

 

Вместе с тем приоритет Менделеева в открытии периодического закона химических элементов является совершенно неоспоримым (сам Мейер на него никогда и не претендовал). Мейер, Шанкуртуа, Ньюлендс и Одлинг систематизировали элементы, указывая на наличие несомненной закономерности в численных величинах атомных весов. Однако никто до Менделеева не решился счесть эти закономерности общим законом природы. Заслуга Менделеева состоит в том, что он не просто расположил элементы в определённом порядке, но взял на себя смелость на основании предположения, что именно атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов – прежде всего экабора, экаалюминия и экасилиция. Сам Менделеев по этому поводу высказался следующим образом: "Ни де Шанкуртуа, которому французы приписывают право на открытие периодического закона, ни Ньюлендс, которого выставляют англичане, ни Л. Мейер, которого цитировали иные как основателя периодического закона, не рисковали предугадывать свойства неоткрытых элементов, изменять принятые веса атомов и вообще считать периодический закон новым, строго поставленным законом природы, могущим охватывать ещё доселе необобщённые факты, как это сделано мною с самого начала (1869)".

 

Формулировка Менделеевым периодического закона и построение периодической таблицы означали лишь начало развития учения о периодичности свойств элементов. Предсказания Менделеева вначале были встречены с известным скепсисом; лишь после того, как были открыты предсказанные элементы, и обнаружено совпадение их реальных свойств с предсказанными, периодический закон был признан в качестве одного из фундаментальных законов химии. В развитии периодического закона принято выделять два этапа – химический и физический.

 

Развитие периодического закона

 

Химический этап развития периодического закона начался с открытия предсказанных элементов.

 

В 1875 г. французский химик Поль Эмиль Лекок де Буабодран открыл новый элемент, который был назван галлием. Менделеев сразу же указал, что галлий представляет собой экаалюминий. Дальнейшие исследования полностью подтвердили это, причём оказалось, что Менделеев предсказал плотность галлия точнее, чем Лекок де Буабодран экспериментально определил её.

 

В 1879 г. шведский химик Ларс Фредерик Нильсон опубликовал сообщение об открытии скандия. Свойства скандия в точности соответствовали свойствам менделеевского экабора.

 

В 1886 г. немецкий химик Клеменс Александр Винклер открыл германий. Исследование свойств нового элемента показало, что он полностью идентичен с экасилицием Менделеева.

 

Полное подтверждение предсказаний Менделеева означало торжество периодического закона. С середины 1880-х годов учение о периодичности было окончательно признано в качестве одной из основ теоретической химии.

 

Тем не менее, в периодическом законе оставались некоторые проблемы. Предстояло определиться с местом в периодической таблице для двух групп элементов – инертных газов, имеющих нулевую валентность, и тринадцати редкоземельных элементов. Нельзя не упомянуть о том, что открытие большого числа элементов во второй половине XIX века было в значительной мере обусловлено появлением спектрального анализа, метода, который предложили в конце 1850-х годов немецкие учёные Густав Роберт Кирхгоф и Роберт Вильгельм Бунзен. В 1900-1902 гг. Д. И. Менделеев, Уильям Рамзай, первооткрыватель инертных газов, и Богуслав Браунер, известный своими работами по уточнению атомных масс химических элементов, произвели модернизацию периодической таблицы. Менделеев и Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы. Нулевая группа прекрасно вписалась в периодическую таблицу; инертный газ явился элементом, переходным между галогенами и щелочными металлами. Браунер предложил решение проблемы размещения в таблице редкоземельных элементов. По его мнению, РЗЭ составляют особую группу периодической системы: "Подобно тому, как в Солнечной системе целая группа астероидов занимает полосу на месте пути, по которому должна бы двигаться одна планета, так точно целая группа элементов редких земель могла бы занять в системе одно место, на котором в другом случае стоит один элемент... Таким образом, все эти элементы, очень подобные один другому, стали бы на том месте в IV группе восьмого ряда, которое до сих пор занимал церий... Элементы редких земель создали бы особую интерпериодическую группу, аналогичную до некоторой степени восьмой группе, поместившись в середине остальных групп периодической системы..." Шестой период таблицы, таким образом, должен быть длиннее, чем четвёртый и пятый, которые в свою очередь длиннее, чем второй и третий периоды. В коротком варианте периодической таблицы Браунер предложил поместить все РЗЭ в одну клетку четвёртой группы.

 

Модернизация периодической системы в начале XX века завершила химический этап её развития. Химия в принципе не могла объяснить причину периодичности свойств элементов и их соединений. Дальнейшее развитие периодического закона в XX веке связано с блестящими успехами физики, приведшими к революционным изменениям в естествознании.

 

Физический этап развития периодического закона можно в свою очередь разделить на несколько стадий:

 

1. Установление делимости атома на основании открытия электрона и радиоактивности (1896 – 1897);

 

2. Разработка моделей строения атома (1911 – 1913);

 

3. Открытие и разработка системы изотопов (1913);

 

4. Открытие закона Мозли (1913), позволяющего экспериментально определять заряд ядра и номер элемента в периодической системе;

 

5. Разработка теории периодической системы на основании представлений о строении электронных оболочек атомов (1921 – 1925);

 

6. Создание основ квантовой теории периодической системы (1926 – 1932).

 

 

Билеті

 

ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені І.І. МЕЧНИКОВА

ХІМІЧНИЙ ФАКУЛЬТЕТ

Напрям підготовки/спеціальність ___ 6.040101, хімія _____

Навчальна дисципліна Істория хімії

Курс ІІІ Семестр 6

 

<== предыдущая лекция | следующая лекция ==>
Элексир долголетия 7 страница | Екзаменаційний білет № _4_
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.