Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физическое уравнение

Изучим связь между деформациями и внутренними усилиями элементов расчетной модели стержневой системы.

Выбранная нами расчетная модель сооружения такова, что механические и геометрические характеристики ее отдельных элементов постоянны, а внешняя нагрузка действует только в узлах. В этом случае по нескольким конечным значениям усилий в элементах расчетной модели можно определять усилия во всех точках стержней.

В расчетных моделях плоской стержневой системы встречаются три типовых элемента: 1) элемент с двумя жесткими узлами, 2) элемент с шарнирным и жестким узлами, 3) элемент с двумя шарнирными узлами. При их рассмотрении введем следующие обозначения: er – некоторый элемент, r – номер этого элемента.

1) Элемент с двумя жесткими узлами (рис. 13.2 а). В нем продольная и поперечная силы постоянны, а Q можно выразить через начальный и конечный моменты элемента: .

2) Элемент с шарнирным и жестким узлами (рис. 13.2 б), в котором поперечную силу можно выразить через конечный момент: .

3) Элемент с двумя шарнирными узлами (рис. 13.2 в. В нем имеется лишь постоянная продольная сила N.

а) б)

в)

 

Рис. 13.2

Зависимость между внутренними усилиями и деформациями этих элементов может быть установлена через обобщенный закон Гука и записана в матричной форме

, (2)

где – матрица податливости элемента, связывающая вектор перемещений элемента с вектором усилий .

Например, в элементе 1-го типа связь между компонентами векторов перемещений и внутренних усилий выражается формулами (даются без вывода)

,

,

.

Если эти уравнения записать в матричной форме (2), то матрица податливости элемента первого типа будет

.

Для элемента второго типа имеем

, , .

Для элемента третьего типа

, , .

Теперь рассмотрим полную дискретную модель сооружения как состоящую из m элементов , ,…, . Для всех этих элементов можно записать уравнения (2), связывающие вектора деформаций элементов с векторами усилий . Если же объединить эти уравнения в общую систему, а вектора деформаций и усилий отдельных элементов объединить в вектора и , то полученную систему уравнений можно записать в виде одного матричного уравнения

= BS.

Оно, как устанавливающее связь между разными физическими величинами расчетной модели, называется физическим уравнением, где матрица

éû

называется матрицей податливости системы. Здесь знак é û означает диагональность матрицы.

<== предыдущая лекция | следующая лекция ==>
Геометрическое уравнение | Решение полной системы уравнений
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 586; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.