Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кольца Ньютона




На рис. 8.12 изображена оправа, в которой зажаты две стеклянные пластины. Одна из них слегка выпуклая, так что пластины касаются друг друга в какой-то точке. И в этой точке наблюдается нечто странное: вокруг нее возникают кольца. В центре они почти не окрашены, чуть дальше переливаются всеми цветами радуги, а к краю теряют насыщенность цветов, блекнут и исчезают.

Так выглядит эксперимент, в XVII веке положивший начало современной оптике. Ньютон подробно исследовал это явление, обнаружил закономерности в расположении и окраске колец, а также объяснил их на основе корпускулярной теории света.

Кольцевые полосы равной толщины, наблюдаемые в воздушном зазоре между соприкасающимися выпуклой сферической поверхностью линзы малой кривизны и плоской поверхностью стекла (рис. 8.13), называют кольцами Ньютона.

Рис. 8.12   Рис. 8.13

Общий центр колец расположен в точке касания. В отраженном свете центр темный, так как при толщине воздушной прослойки, на много меньшей, чем длина волны, разность фаз интерферирующих волн обусловлена различием в условиях отражения на двух поверхностях и близка к π. Толщина h воздушного зазора связана с расстоянием r до точки касания (рис. 8.13):

.

Здесь использовано условие. При наблюдении по нормали темные полосы, как уже отмечалось, соответствуют толщине, поэтому для радиуса m -го темного кольца получаем

(m = 0, 1, 2, …).

Если линзу постепенно отодвигать от поверхности стекла, то интерференционные кольца будут стягиваться к центру. При увеличении расстояния на картина принимает прежний вид, так как место каждого кольца будет занято кольцом следующего порядка. С помощью колец Ньютона, как и в опыте Юнга, можно сравнительно простыми средствами приближенно определить длину волны света.

Полосы равной толщины можно наблюдать и с помощью интерферометра Майкельсона, если одно из зеркал з1 или з2 (рис. 8.9) отклонить на небольшой угол.

Итак, полосы равного наклона получаются при освещении пластинки постоянной толщины () рассеянным светом, в котором содержатся лучи разных направлений. Полосы равной толщины наблюдаются при освещении пластинки переменной толщины (клина) () параллельным пучком света. Полосы равной толщины локализованы вблизи пластинки.

Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания слегка изогнутой выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину

билет 62

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых.

Дифракция на щели [править]

 

Распределение интенсивности света при дифракции на щели

В качестве примера рассмотрим дифракционную картину возникающую при прохождении света через щель в непрозрачном экране. Мы найдём интенсивность света в зависимости от угла в этом случае. Для написания исходного уравнения используем принцип Гюйгенса.

Рассмотрим монохроматическую плоскую волну с амплитудой с длиной волны λ, падающую на экран с щелью ширины a.

Будем считать, что щель находится в плоскости x′-y′ с центром в начале координат. Тогда может предполагаться, что дифракция производит волну ψ, которая расходится радиально. Вдали от разреза можно записать

 

пусть (x′,y′,0) — точка внутри разреза, по которому мы интегрируем. Мы хотим узнать интенсивность в точке (x,0,z). Щель имеет конечный размер в x направлении (от до), и бесконечна в y направлении ([, ]).

Расстояние r от щели определяется как:

 

 

Предполагая случай дифракции Фраунгофера, получим условие. Другими словами, расстояние до точки наблюдения много больше характерного размера щели (ширины). Используябиноминальное разложение и пренебрегая слагаемыми второго и выше порядков малости, можно записать расстояние в виде:

 

 

Видно, что 1/ r перед уравнением не осциллирует, то есть даёт малый вклад в интенсивность по сравнению с экспоненциальным множителем. И тогда его можно записать приближённо как z.

   
   
   

Здесь мы введём некую константу 'C', которой обозначим все постоянные множители в предыдущем уравнении. Она, в общем случае может быть комплексной, но это не важно, так как в конце нас будет интересовать только интенсивность, и нам будет интересен только квадрат модуля.

В случае дифракции Фраунгофера мало, поэтому. такое же приближение верно и для. Таким образом, считая, приводит к выражению:

   
   

Используя формулу Эйлера и её производную: и.

 

где ненормированная синкус функция определена как.

Подставляя в последнее выражение для амплитуды, можно получить ответ для интенсивности в виде волны в зависимости от угла θ:

     

Билет63

В начале XIX века, когда Т. Юнг и О. Френель развивали волновую теорию света, природа световых волн была неизвестна. На первом этапе предполагалось, что свет представляет собой продольные волны, распространяющиеся в некоторой гипотетической среде – эфире. При изучении явлений интерференции и дифракции вопрос о том, являются ли световые волны продольными или поперечными, имел второстепенное значение. В то время казалось невероятным, что свет – это поперечные волны, так как по аналогии с механическими волнами пришлось бы предполагать, что эфир – это твердое тело (поперечные механические волны не могут распространяться в газообразной или жидкой среде).

Однако, постепенно накапливались экспериментальные факты, свидетельствующие в пользу поперечности световых волн. Еще в конце XVII века было обнаружено, что кристалл исландского шпата (CaCO3) раздваивает проходящие через него лучи. Это явление получило название двойного лучепреломления (рис. 3.11.1).

 
Рисунок 3.11.1. Прохождение света через кристалл исландского шпата (двойное лучепреломление). Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие через кристалл

В 1809 году французский инженер Э. Малюс открыл закон, названный его именем. В опытах Малюса свет последовательно пропускался через две одинаковые пластинки из турмалина (прозрачное кристаллическое вещество зеленоватой окраски). Пластинки можно было поворачивать друг относительно друга на угол φ (рис. 3.11.2).

 
Рисунок 3.11.2. Иллюстрация к закону Малюса

Интенсивность прошедшего света оказалась прямо пропорциональной cos2 φ:

I ~ cos2 φ.

Ни двойное лучепреломление, ни закон Малюса не могут найти объяснение в рамках теории продольных волн. Для продольных волн направление распространения луча является осью симметрии. В продольной волне все направления в плоскости, перпендикулярной лучу, равноправны. В поперечной волне (например, в волне, бегущей по резиновому жгуту) направление колебаний и перпендикулярное ему направление не равноправны (рис. 3.11.3).

 
Рисунок 3.11.3. Поперечная волна в резиновом жгуте. Частицы колеблются вдоль оси y. Поворот щели S вызовет затухание волны

Таким образом, асимметрия относительно направления распространения (луча) является решающим признаком, который отличает поперечную волну от продольной. Впервые догадку о поперечности световых волн высказал в 1816 г. Т. Юнг. Френель, независимо от Юнга, также выдвинул концепцию поперечности световых волн, обосновал ее многочисленными экспериментами и создал теорию двойного лучепреломления света в кристаллах.

В середине 60-х годов XIX века на основании совпадения известного значения скорости света со скоростью распространения электромагнитных волн Максвелл сделал вывод о том, что свет – это электромагнитные волны. К тому времени поперечность световых волн уже была доказано экспериментально. Поэтому Максвелл справедливо полагал, что поперечность электромагнитных волн является еще одним важнейшим доказательством электромагнитной природы света.

Электромагнитная теория света приобрела должную стройность, поскольку исчезла необходимость введения особой среды распространения волн – эфира, который приходилось рассматривать как твердое тело.

В электромагнитной волне вектора и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 2.6.3). Во всех процессах взаимодействия света с веществом основную роль играет электрический вектор поэтому его называют световым вектором. Если при распространении электромагнитной волны световой вектор сохраняет свою ориентацию, такую волну называют линейно поляризованной или плоско поляризованной (термин поляризация волн был введен Малюсом применительно к поперечным механическим волнам). Плоскость, в которой колеблется световой вектор называется плоскостью колебаний (плоскость yz на рис. 2.6.3), а плоскость, в которой совершает колебание магнитный вектор – плоскостью поляризации (плоскость xz на рис. 2.6.3).

Если вдоль одного и того же направления распространяются две монохроматические волны, поляризованные в двух взаимно перпендикулярных плоскостях, то в результате их сложения в общем случае возникает эллиптически поляризованная волна (рис. 3.11.4).

 
Рисунок 3.11.4. Сложение двух взаимно перпендикулярно поляризованных волн и образование эллиптически поляризованной волны

В эллиптически поляризованной волне в любой плоскости P, перпендикулярной направлению распространения волны, конец результирующего вектора за один период светового колебания обегает эллипс, который называется эллипсом поляризации. Форма и размер эллипса поляризации определяются амплитудами ax и ay линейно поляризованных волн и фазовым сдвигом Δφ между ними. Частным случаем эллиптически поляризованной волны является волна с круговой поляризацией (ax = ay,Δφ = ± π / 2).

Рис. 3.11.5 дает представление о пространственной структуре эллиптически поляризованной волны.

 
Рисунок 3.11.5. Электрическое поле в эллиптически поляризованной волне

Линейно поляризованный свет испускается лазерными источниками. Свет может оказаться поляризованным при отражении или рассеянии. В частности, голубой свет от неба частично или полностью поляризован. Однако, свет, испускаемый обычными источниками (например, солнечный свет, излучение ламп накаливания и т. п.), неполяризован. Свет таких источников в каждый момент состоит из вкладов огромного числа независимо излучающих атомов (см. § 3.2) с различной ориентацией светового вектора в излучаемых этими атомами волнах. Поэтому в результирующей волне вектор беспорядочно изменяет свою ориентацию во времени, так что в среднем все направления колебаний оказываются равноправными. Неполяризованный свет называют также естественным светом.

В каждый момент времени вектор может быть спроектирован на две взаимно перпендикулярные оси (рис. 3.11.6).

 
Рисунок 3.11.6. Разложение вектора по осям

Это означает, что любую волну (поляризованную и неполяризованную) можно представить как суперпозицию двух линейно поляризованных во взаимно перпендикулярных направлениях волн: Но в поляризованной волне обе составляющие Ex (t) и Ey (t) когерентны, а в неполяризованной – некогерентны, т. е. в первом случае разность фаз между Ex (t) и Ey (t) постоянна, а во втором она является случайной функцией времени.

Явление двойного лучепреломления света объясняется тем, что во многих кристаллических веществах показатели преломления волн, линейно поляризованных во взаимно перпендикулярных направлениях, различны. Поэтому кристалл раздваивает проходящие через него лучи (рис. 3.11.1). Два луча на выходе кристалла линейно поляризованы во взаимно перпендикулярных направлениях. Кристаллы, в которых происходит двойное лучепреломление, называются анизотропными.

С помощью разложения вектора на составляющие по осям можно объяснить закон Малюса (рис. 3.11.2).

У многих кристаллов поглощение света сильно зависит от направления электрического вектора в световой волне. Это явление называют дихроизмом. Этим свойством, в частности, обладают пластины турмалина, использованные в опытах Малюса. При определенной толщине пластинка турмалина почти полностью поглощает одну из взаимно перпендикулярно поляризованных волн (например, Ex) и частично пропускает вторую волну (Ey). Направление колебаний электрического вектора в прошедшей волне называется разрешенным направлением пластинки. Пластинка турмалина может быть использована как для получения поляризованного света (поляризатор), так и для анализа характера поляризации света (анализатор). В настоящее время широко применяются искусственные дихроичные пленки, которые называются поляроидами. Поляроиды почти полностью пропускают волну разрешенной поляризации и не пропускают волну, поляризованную в перпендикулярном направлении. Таким образом, поляроиды можно считать идеальными поляризационными фильтрами.

Рассмотрим прохождение естественного света последовательно через два идеальных поляроида П1 и П2 (рис. 3.11.7), разрешенные направления которых повернуты друг относительно друга на некоторый угол φ. Первый поляроид играет роль поляризатора. Он превращает естественный свет в линейно поляризованный. Второй поляроид служит для анализа падающего на него света.

 
Рисунок 3.11.7. Прохождение естественного света через два идеальных поляроида. yy' – разрешенные направления поляроидов

Если обозначить амплитуду линейно поляризованной волны после прохождения света через первый поляроид через то волна, пропущенная вторым поляроидом, будет иметь амплитуду E = E 0 cos φ. Следовательно, интенсивность I линейно поляризованной волны на выходе второго поляроида будет равна

 

Таким образом, в электромагнитной теории света закон Малюса находит естественное объяснение на основе разложения вектора на составляющие.

 

 
Модель. Поляризация света

 

 
Модель. Закон Малюса

Билет 64

Диспе́рсия све́та (разложение света) — это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

· Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие скоростей распространения лучей света c различнойдлиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше скорость волны в среде:

· у света красного цвета скорость распространения в среде максимальна, а степень преломления — минимальна,

· у света фиолетового цвета скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

· Белый свет разлагается в спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видео-объективов.

Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1539; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.031 сек.