КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Эквипотенциальные поверхности
Силовые линии электростатического поля Непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности, называются силовыми линиями электрического поля или линиями напряженности. В действительности силовых линий не существует, это просто графический метод исследования электростатических полей. Силовые линии наделены следующими свойствами: – Силовые линии электростатического поля не замкнуты ‑ они начинаются на положительных и заканчиваются на отрицательных зарядах. – Линии непрерывны и нигде не пересекаются (т.к. их пересечение означало бы отсутствие определенного направления напряженности электрического поля в данной точке). – Густота линий выбирается так, чтобы количество линий, пронизывающих единицу поверхности площадки, перпендикулярной к линиям, было равно численному значению (модулю) вектора
Так как силовые линии начинаются или оканчиваются на заряженных телах, а затем расходятся в разные стороны, то густота линий больше вблизи заряженных тел. Следовательно, вблизи заряженных тел напряженность поля больше, чем в более удалённых точках. – Общее число силовых линий пересекающих некоторую поверхность иначе называют потоком вектора напряжённости поля. На рис. 1.4 приведены силовые линии точечных положительного и отрицательного зарядов и электрического диполя (системы двух зарядов). С графическим изображением полей, создаваемых более сложной системы зарядов можно познакомиться в лаборатории виртуального практикума кафедры «Физика».
Для более наглядного графического изображения полей кроме линий напряжённости используют поверхности равного потенциала или эквипотенциальные поверхности. Как следует из названия, эквипотенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция x, y, z, то уравнение эквипотенциальной поверхности имеет вид:
Докажем это утверждение. Пусть линия Переместим из точки 1 в точку 2 вдоль линии
Т.е. работа перемещения пробного заряда вдоль эквипотенциальной поверхности равна нулю. Эту же работу можно определить и другим способом – как произведение заряда
Величина работы не зависит от способа её подсчёта, согласно (1.5) она равна нулю. Отсюда вытекает, что
На рис. 1.6 (а) показаны эквипотенциальные поверхности (точнее, их пересечения с плоскостью чертежа) для поля точечного заряда. В соответствии с характером изменения На рис. 1.6 (б) изображены эквипотенциальные поверхности и линии напряжённости для поля диполя. Из рис. 1.6 видно, что при одновременном использовании эквипотенциальных поверхностей и линий напряжённости картина поля получается особенно наглядной. Для однородного поля эквипотенциальные поверхности, очевидно, представляют собой систему равноотстоящих друг от друга плоскостей, перпендикулярных к направлению напряжённости поля.
1.8 Связь между напряжённостью поля и потенциалом (градиент потенциала) Пусть имеется произвольное электростатическое поле. В этом
Вектор напряжённости направлен по нормали к поверхности Ось x, проведённая из точки 1, пересекает поверхность Отрезок dx представляет собой кратчайшее расстояние между точками 1 и 2. Работа, совершаемая при перемещении заряда
С другой стороны, эту же работу можно записать как:
Приравнивая эти два выражения, получим:
где символ частной производной подчёркивает, что дифференцирование производиться только по x. Повторив аналогичные рассуждения для осей y и z, можем найти вектор
где Вектор, определяемый выражением (1.7) называется градиентом скаляра φ. Для него наряду с обозначением Следовательно, из определения градиента можно записать:
т.е. напряжённость поля По формуле 1.7 можно найти проекцию вектора
где (
Дата добавления: 2013-12-12; Просмотров: 4340; Нарушение авторских прав?; Мы поможем в написании вашей работы! |