Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общий достаточный признак сходимости знакопеременных рядов

Знакочередующийся ряд является частным случаем знакопеременного ряда. Числовой ряд , содержащий бесконечное множество положительных и бесконечных множеств отрицательных членов, называется знакопеременным. Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.

Теорема. Пусть дан знакопеременный ряд . Если сходится ряд , составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.

Доказательство:

Рассмотри вспомогательный ряд, составленный из членов рядов и .

.

Очевидно, что для всех , но ряд сходится в силу условий теоремы и свойства 1 числовых рядов. Следовательно, на основании признака сравнения сходится и ряд . Поскольку данный знакопеременный ряд представляет собой разность двух сходящихся рядов , то на основании свойства 2 числовых рядов ряд сходится.

Отметим, что обратное утверждение несправедливо: если сходится ряд , то это не означает, что сходится ряд .

Пример.

Исследовать сходимость ряда . Для этого ряда выполнены условия признака Лейбница. Следовательно, ряд сходится. Однако ряд, составленный из модулей членов этого ряда, т.е. расходится (гармонический ряд).

 

<== предыдущая лекция | следующая лекция ==>
Признак Лейбница | Приближенное вычисление значений функций
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 1097; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.