Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Датчики с аналоговым естественным выходным сигналом

Классификация преобразователей

Преобразование сигналов в системах управления

И средств автоматизации

Государственная система промышленных приборов

Решение о создании ГСП было принято в 1960 году. ГСП – совокупность приборов и устройств для получения, обработки и использования информации, удовлетворяющих единым техническим требованиям и имеющих единые параметры входных и выходных сигналов. Кроме того, в ГПС были унифицированы все основные конструкции датчиков.

ГСП представляет собой сложную развивающуюся систему, состоящую из ряда подсистем, которые можно рассматривать и классифицировать с разных позиций.

На рис. 1.4 представлена функционально-иерархическая структура ГСП.

 

Рис. 1.4. Функционально-иерархическая структура ГСП.

 

Важнейшая функция системы сбора информации заключается в восприятии сведений о состоянии объекта или внешней среды и их обработке для ввода в ЭВМ. Технические средства и человек могут воспринимать только ту информацию, которая «материализована», т.е. превращена в доступное для измерений изменение параметров какой — либо физической среды или объекта.

Сигнал есть физическая величина, отображающая информацию.

В настоящее время существует примерно следующее распределение доли измерений различных физических величин в промышленности: температура — более 50 %, расход вещества и механические величины (перемещение, сила, давление и др.) - по 15%, количество, время и состав вещества — по 5%, электрические и магнитные величины — менее 5%.

В ГСП все контролируемые величины разбиты на пять следующих групп: теплоэнергетические, электроэнергетические, механические величины, химический состав и физические свойства.

Теплоэнергетические величины: температура, давление, перепад давлений, уровень и расход.

Электроэнергетические величины: постоянные и переменные ток и напряжение, мощность (активная и реактивная), коэффициент мощности, частота и сопротивление изоляции.

Механические величины: линейные и угловые перемещения, уголовная скорость, деформация, усилие, вращающие моменты, число изделий, твердость материалов, вибрация, шум и масса.

Химический состав: концентрация, состав, химические свойства.

Физические свойства: влажность электропроводимость, плотность, вязкость, освещенность и др.

Устройства, в которых первично преобразуется измеряемая физическая величина, называют первичными измерительными преобразователями (ПИП). Измерительные преобразователи (ИП) бывают с естественным и унифицированным выходными сигналами.

Естественный выходной сигнал формируется первичными ИП естественным путем и может представлять собой угол поворота, перемещение, усилие, сопротивление, емкость и т.д.

Унифицированный сигнал — это сигнал определенной физической природы, изменяющийся в определенных фиксированных пределах независимо от вида измеряемой величины, метода и диапазона ее измерения. Для получения унифицированных аналоговых сигналов применяют ИП, называемые нормирующими.

Измерительные преобразователи можно классифицировать:

· по виду измеряемой физической величины — различают ИП линейных и угловых перемещений, давления, температуры, концентрации вещества и т.д.;

· по виду используемой энергии — электрические, механические, пневматические и гидравлические;

· по соотношению между входной и выходной величинами:

преобразование неэлектрической величины в неэлектрическую (рычаги, редукторы, мембраны, пружины и т. д.);

преобразование неэлектрической величины в электрическую (потенциометры, термопары, емкостные и индуктивные ИП и др.);

преобразование одной электрической величины в другую (датчики тока, напряжения, фазочувствительные схемы и усилители);

· по виду выходного сигнала — аналоговые (потенциальные, токовые, частотные, фазовые), дискретные (амплитудно-, время- и числоимпульсные и др.), релейные, с естественным или унифицированным выходным сигналом;

· по характеру преобразования входной величины в выходную — параметрические, генераторные, компенсационные, частотные и фазовые.

Параметрические преобразователи — это преобразователи, в которых изменение входной неэлектрической величины преобразуется в изменение какого — либо электрического параметра выходной цепи (активного сопротивления, индуктивности, емкости). В них для получения сигнала требуется внешний источник энергии.

Генераторные преобразователи — это преобразователи, в которых входная величина преобразуется в ЭДС на выходе (датчики термоЭДС, пьезоэлектрические, фотоэлектрические, тахометрические и др.). В них формирование сигнала осуществляется за счет энергии самого сигнала.

Компенсационные преобразователи — это преобразователи, в которых входная величина (часто после предварительного преобразования) компенсируется другой величиной, имеющей ту же физическую природу. Для непрерывной компенсации осуществляется отрицательная обратная связь.

Частотные и фазовые преобразователи — это преобразователи, в которых различные физические величины на входе (перемещение, скорость, расход) изменяют частоту переменного тока, частоту следования импульсов или фазу.

ИП можно также классифицировать по конструктивному исполнению, по величине погрешности и по другим признакам.

Наибольшее распространение в системах автоматизации получили параметрические преобразователи неэлектрических величин в электрические. В общем случае такой преобразователь состоит из первичного измерительного преобразователя ПП (чувствительного элемента), преобразующего контролируемую величину х в величину х1, удобную для измерения, и измерительного преобразователя П, в котором величина х1 преобразуется в электрический сигнал у за счет подводимой извне энергии.

Устройство, которое, подвергаясь воздействию измеряемой физической величины, выдает эквивалентный сигнал, являющийся функцией измеряемой величины, называют датчиком. Другими словами, датчик преобразует один вид сигнала-носителя информации в другой, обычно — в электрическую величину (напряжение, ЭДС или ток) или в параметр электрической цепи (частота, фаза).

<== предыдущая лекция | следующая лекция ==>
 | 
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 595; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.