Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биоремедиация. Биовыщелачивание




Биоочистка и детоксикация отходов

Биоочистка - удаление посторонних или вредных агентов из вод и почв с помощью живых организмов, способствующих фильтрации и(или) разложению этих примесей, восстановлению первичных свойств среды.

На современном этапе развития науки биоочистка является основным и наиболее перспективным методом удаления загрязнений из сточных вод, т.к. обеспечивает достаточно глубокий распад веществ и основан на использовании природных процессов и катализаторов.

Среди биологической очистки наибольшее распространение получил аэробный метод. Наиболее распространены двухступенчатые биологические системы обработки сточных вод, т.к. обеспечивают более глубокую очистку вод, нежели одноступенчатые.

Для очистки сточных вод, содержащих токсичные вещества, можно использовать аэротенки-смесители. Разработан метод с использованием биокоагулянта – раствора трехвалентного железа в культуре Thibascillus Ferrooxidans, используемого для осаждения тяжелых металлов и фосфора из промышленных сточных вод. С помощью данной культуры их сточных вод биологических очистных сооружений возможно растворение металлической стружки. Полученный биокоагулянт с содержанием трехвалентного железа до 50 г/л использовался для доочистки производственных сточных вод от тяжелых металлов и фосфора.

При анаэробной биоочистке производится разложение сложной органики, в частности – жиров, на более простые; далее, на аэробной стадии. они окислятся в нитраты при помощи микроорганизмов.

Детоксикация отходов - освобождение их от вредных компонентов на специализированных установках.

 

Биоремедиация — комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов — растений, грибов, насекомых, червей и других организмов. Биоремедиация - одна из способностей природы к самоочищению окружающей среды под воздействием антропогенных загрязнителей. Хотя термин «биоремедиация» возник совсем недавно, но сам природный процесс существовал на этапе возникновения первых форм жизни, когда под воздействием загрязнённых компонентов были, выработали определённые детоксифицирующие механизмы по преобразованию их в менее вредные формы, снижающие экологическое напряжение. В настоящее время биоремедиционные технологии основаны на механинизмах и потенциалах почти всех видах жизненных форм, то есть растений (фиторемидиация), микроорганизмов (микробная ремидиация) и животных (зооремидиация).

Фиторемидиация является рентабельным, доступным и жизнеспособным механизмом, который предотвращает загрязнение всех компонентов окружающей среды: воздуха, воды или почвы, используя растения.

Микроборемедиация. Главную роль в деградации загрязнений играют микроорганизмы. Микроорганизмы преобразовывают опасные органические загрязнители к экологически безопасным уровням в почвах, поверхностных материалах, воде и осадках. Микробы имеют дело с ядовитыми химикатами, применяя ферменты, чтобы преобразовать один химикат в другую форму при этом получают необходимую для жизни энергию. Химические преобразования приводят к расщеплению больших молекул в несколько маленьких молекул в более простой форме. В некоторых случаях побочные продукты бактериальной ремедиации не только безопасны, но и могут оказаться полезными.

Дезактивация токсических веществ с помощью животных получил название - зооремедиация. Многие водные животных были успешно продемонстрированы для обработки загрязненной воды, но этот метод не нашел широкого применения вследствие существенных экологических соображений безопасности.

Еще за тысячелетие до нашей эры римляне, финикийцы и люди иных ранних цивилизаций извлекали медь из рудничных вод. В средние века в Испании и Англии применяли процесс «выщелачивания» для получения меди из медьсодержащих минералов. Безусловно, древние горняки не могли предположить, что активным элементом данного процесса являются микроорганизмы.

Несмотря на давность существования биотехнологических процессов извлечения металлов из руд и горных пород, только в 50-е годы была доказана активная роль микроорганизмов в этом процессе. В 1947 году в США Колмер и Хинкли выделили из шахтных дренажных вод микроорганизмы, окисляющие двухвалентное железо и восстанавливающие серу. Микроорганизмы были идентифицированы как Thiobacillus ferrooxydans. Вскоре было доказано, что эти железоокисляющие бактерии в процессе окисления переводят медь из рудных минералов в раствор. Бактерии Thiobacillus ferrooxidans очень широко распространены в природе, они встречаются там, где имеют место процессы окисления железа или минералов. Они в настоящее время наиболее изучены. Помимо Thiobacillus ferrooxidans, широко известны также Leptospirillum ferrooxidans. Первые окисляют сульфидный и сульфитный ионы, двухвалентное железо, сульфидные минералы меди, урана. Спириллы не окисляют сульфидную серу и сульфидные минералы, но эффективно окисляют двухвалентное железо в трехвалентное, а некоторые штаммы окисляют пирит. Сравнительно недавно выделены и описаны бактерии Sulfobacillus thermosulfidooxidans, Thiobacillus thiooxidans, T. acidophilus. Окислять S0, Fe2+ и сульфидные минералы способны также некоторые представители родов Sulfolobus и Acidianus. Среди этих микроорганизмов – мезофильные и умеренно термотолерантные формы, крайние ацидофилы и ацидотермофилы. Для всех этих микроорганизмов процессы окисления неорганических субстратов служат источником энергии. Затем были выделены и описаны многие другие микроорганизмы, участвующие в процессах окисления сульфидных минералов.

Несколько позднее было установлено, что нитрифицирующие бактерии способны выщелачивать марганец из карбонатных руд и разрушать алюмосиликаты. Среди микроорганизмов, окисляющих NH4+ → NO2–, это представители родов Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrobacter, Nitrococcus и др.

Определенный интерес для биосорбции металлов из растворов вызывают денитрифицирующие бактерии; наиболее активные среди них – представители родов Pseudomonas, Alcaligenes, Bacillus. Эти микроорганизмы, являясь факультативными анаэробами, используют в качестве акцептора электронов окислы азота (NO3–, NO2–, N2O) или кислород, а донорами электронов могут служить различные органические соединения, водород, восстановленные соединения серы.

Сульфатвосстанавливающие бактерии, которые используют в качестве доноров электронов молекулярный водород и органические соединения, в анаэробных условиях восстанавливают сульфаты, SO23–, S2O23–, иногда S0. Оказалось, что некоторые гетеротрофные микроорганизмы способны разрушать горные породы в результате выделения органических продуктов обмена – органических кислот, полисахаридов; источником энергии и углерода для организмов служат различные органические вещества. Так, силикатные породы деструктурируют представители рода Bacillus в результате разрушения силоксанной связи Si-O-Si; активными деструкторами силикатов

являются также грибы Aspergillus, Penicillum и др.

Все названные выщелачивающие бактерии переводят в ходе окисления металлы в раствор, но не по одному пути. Различают «прямые» и «непрямые» методы бактериального окисления металлов.

Процесс окисления железа и серы бактериями является прямым окислительным процессом:

 

4 FeSO4 + O2 + 2 H2SO4 → 2 Fe2(SO4)3 + 2 H2O,

S8 + 12 O2 + 8 H2O → 8 H2SO4.

 

В результате прямого бактериального окисления окисляются пирит:

 

4 FeS2 + 15 O2 + 2 H2O→ 2 Fe2(SO4)3 + 2 H2SO4

 

и сфалерит:

 

ZnS + 2 O2 → ZnSO4

 

Ион трехвалентного железа, образующийся в результате окисления бактериями двухвалентного железа, служит сильным окисляющим агентом, переводящим в раствор многие минералы, например халькоцит:

 

Cu2S + 2 Fe2(SO4)3 → 2 CuSO4 + 4 FeSO4 + S0

 

и уранит:

 

UO2 + Fe2(SO4)3 → UO2 SO4 + 2 FeSO4

 

Выщелачивание, происходящее при участии иона Fe3+, который образуется в результате жизнедеятельности бактерий, называется непрямым окислением. Часто в ходе непрямого окисления минералов образуется элементарная сера, которая может непосредственно окисляться бактериями до серной кислоты.

В настоящее время процесс бактериального выщелачивания для получения меди достаточно широкого применяют повсеместно; меньшие масштабы имеет бактериальное выщелачивание урана. На основании многочисленных исследований принято считать бактериальное выщелачивание перспективным процессом для внедрения в горнодобывающую промышленность. В меньших масштабах применяется в горнодобывающей промышленности другой биотехнологический процесс – извлечение металлов из водных растворов. Это направление обещает существенные перспективы, так как предполагает достаточно дешевые процессы очистки стоков от металлов и экономичное получение при этом сырья.

Например, в изучении железобактерий в последнее время достигнуты большие успехи, связанные с получением чистых культур ряда этих организмов. Это разнообразная группа бактерий, способных окислять и откладывать окислы железа и/или марганца вне или иногда внутри клетки. Накопление окислов железа и марганца на поверхности бактериальных клеток - результат двух взаимосвязанных процессов: аккумуляции (поглощения) клетками этих металлов из раствора и окисления, сопровождающегося обильным отложением нерастворимых окислов на поверхности бактерий.

Процесс аккумуляции тяжелых металлов из растворов в основе имеет физико-химическую природу и в значительной мере обусловлен химическим составом и свойствами поверхностных структур клетки. Он включает связывание металлов внеклеточными структурами (капсулы, чехлы, слизистые выделения), клеточной стенкой и ЦПМ. Сорбционные свойства поверхностных клеточных структур определяются в большой степени суммарным отрицательным зарядом молекул, входящих в их состав. Поглощение металлов приводит к значительному концентрированию их вокруг клеток по отношению к среде. Коэффициент накопления для железа и марганца может достигать значений 100000-1000000.

 




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 2531; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.022 сек.