Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биотехнологические методы в растениеводстве

ИСПОЛЬЗОВАНИЕ БИОТЕХНОЛОГИИ В СЕЛЬСКОМ ХОЗЯЙСТВЕ ДЛЯ РЕШЕНИЯ ЭКОЛОГИЧЕСКИХ ПРОБЛЕМ

Лекция 9

Дополнительная

Основная

СПИСОК ЛИТЕРАТУРЫ

Вопросы для самоконтроля

 

1) Что такое метанообразование?

2) Сколько фаз в механизме метанообразования?

3) Из чего состоит биогаз?

4) Какие типы биогазовых установок существуют?

 

 

1) Волова, Т.Г. Экологическая биотехнология: уч. пособие для университетов / Т.Г. Волова. - Новосибирск: Хронограф, 2007. – 141с.

 

 

1) Елинов, Н.П. Основы биотехнологии / Н.П. Елинов. - СПб.: Наука, 1995, 600с.

2) Биотехнология / Под ред. А. А. Баева. – М: Наука, 1984. – 309с.

3) Сельскохозяйственная биотехнология / под. ред. В.С. Шевелухи. – М.: Высшая школа, 2003. – 469 с.

Повышение биологической продуктивности в сельском хозяйстве является предметом активных исследований комплекса различных биологических наук. Биотехнологические методы традиционно используются в сельском хозяйстве для повышения плодородия почв, борьбы с вредителями и возбудителями болезней культурных растений и животных, приготовления продовольственных продуктов, их консервирования и улучшения питательных свойств. При этом удельный вес биотехнологии для развития и повышения эффективности традиционных сельскохозяйственных технологий постоянно возрастает.

В настоящее время особые перспективы в создании и распространении новых культивируемых сортов растений обещает применение новейших методов биотехнологии – клеточной и генетической инженерии. Усилия биотехнологов направлены на увеличение выхода продукции и повышение ее питательности, усиление устойчивости культивируемых биологических видов к неблагоприятным условиям внешней среды, патогенам и вредителям. При этом остается актуальной проблема поддержания разнообразия среди культивируемых видов и сохранения генетических ресурсов в целом.

Микроорганизмы играют большую роль в повышении плодородия почвы, так как в процессе роста и развития улучшают ее структуру, обогащают питательными веществами, способствуют более полному использованию удобрений.

Интенсивное растениеводство обедняет почву азотом, так как значительная его доля ежегодно выносится из почвы вместе с урожаем. С древних времен для восстановления и улучшения почв существует практика использования бобовых растений, способных в симбиозе с азотфиксирующими микроорганизмами восполнять почвенные запасы азота в результате диазотрофности. Большой положительный эффект от возделывания бобовых вызвал постановку исследований явления диазотрофности. Культивирование бобовых положительно влияет на азотный баланс почв, также облегчает борьбу с эрозией и помогает восстанавливать истощенные земли.

Технология получения азотных биоудобрений. Наиболее простой способ инокуляции основан на использовании почвы после выращивания на ней бобовых растений. Этот метод разработан в конце XIX века и применяется до настоящего времени. Недостаток метода – необходимость перемещения достаточно больших объемов почвы (100–1000 кг/га), а также возможность распространения болезней.

Более эффективным оказалось применение для инокуляции семян специальных препаратов азотфиксирующих бактерий. Клубеньковые бактерии рода Rhizobium, развиваясь в корневой системе бобовых растений, в симбиозе с ними фиксируют атмосферный азот, обеспечивая этим азотное питание растений. Процесс азотфиксации протекает только в клубеньках на корнях бобовых растений, которые образуются в результате проникновения бактерий через корневые волоски в корень. Взаимоотношение бактерий с растениями зависит от комплекса условий, включая физиологическое состояние и условия роста растений, а также физиологическую активность и вирулентность бактерий. Под вирулентностью понимают способность бактерий проникать внутрь корня растений и вызывать образование клубенька.

Первая коммерческая разновидность культуры для инокуляции семян (товарное название «Nitragin») была запатентована в Великобритании Ноббе и Хилтнером в 1896 году. Для разных бобовых в то время выпускали 17 вариантов культуры. В 20-е годы выпускалось много разновидностей инокулятов, среди них были чистые культуры азотфиксирующих микроорганизмов, смеси бактерий с песком или торфом, а также культуры, выращенные на агаре или в жидкой среде.

В качестве носителя для бактерий были опробованы различные композиции: смеси торфа с почвой, добавки люцерны и соломы, перегнившие опилки, бентоит и активированный уголь. В настоящее время для поддержания жизнеспособности симбиотических азотфиксирующих бактерий используют разнообразные носители, но лучшим считается торф.

Сухие препараты азотфиксаторов, приготовленные на основе клубеньковых бактерий рода Rhizobium и предназначенные для повышения урожайности бобовых растений (гороха, фасоли, сои, клевера, люцерны, люпина и др.) в настоящее время выпускаются под товарным названием «Нитрагин». Помимо почвенного нитрагина, выпускают также сухой нитрагин – препарат бактерий с содержанием в 1г не менее 9 млрд. жизнеспособных клеток, в качестве наполнителя используют мел, каолин, бентоит. Препараты сухого нитрагина с остаточной влажностью 5–7 % фасуют по 0.2–1.0 кг и хранят при 15 °С в течение 6 месяцев.

Аналог азотных удобрений – другой препарат азотфиксирующих бактерий – «Азотобактерин», который выпускается промышленностью в нескольких вариантах. Бактерии рода Azotobacter являются свободноживущими азотфиксирующими микроорганизмами и обладают высокой продуктивностью азотфиксации (до 20 мг/г использованного сахара). Помимо связывания атмосферного азота, эти бактерии продуцируют биологически активные соединения (витамины, гиббериллин, гетероауксин и др.). В результате этого инокуляция азотобактерином стимулирует прорастание семян и ускоряет рост и развитие растений. Более того, Azotabacter способен экскретировать фунгицидные вещества. Этим угнетается развитие в ризосфере растений микроскопических грибов, многие из которых тормозят развитие растений. Однако бактерии рода Azotobacter весьма требовательны к условиям среды, особенно концентрации в почве фосфатов и микроэлементов, и активно развиваются в плодородных почвах.

В последние годы для изучения биологической азотфиксации стали применять методы молекулярной биологии и новейшие методы генетики.

Установлена возможность с помощью колифага P1 размножать свободноживущую азотфиксирующую бактерию Klebsiella pneumoniae М5 и с ее помощью трансдуцировать nif-гены (гены азотфиксации). Также доказано, что перенос nif-генов возможен с помощью плазмид от штамма-азотфиксатора к штамму, не обладающему диазотрофностью. Обнаружены конъюгативные плазмиды, несущие гены азотфиксации, относительно легко передающиеся при конъюгации от штамма к штамму. П осле этого появились надежды на получение методами клеточной и генной инженерии растений, способных фиксировать атмосферный азот. Однако перенос генов азотфиксации и их экспрессия является чрезвычайно сложной задачей.

Снабжение растений фосфатами. Фосфатные ионы в почве, как известно, не очень подвижны, поэтому вокруг корневой зоны растений часто возникает дефицит фосфора.

Для улучшения питания сельскохозяйственных культур фосфатами эффективен метод применения фосфоробактерина. Препарат получают на основе спор культуры Bacillus megaterium var. phosphaticum. Эти бактерии превращают трудно усвояемые минеральные фосфаты и фосфорорганические соединения (нуклеиновые кислоты, нуклеопротеиды) в доступную для растений форму. Следует отметить, что фосфоробактерин не заменяет фосфорные удобрения и не действует без них. Положительный эффект от применения фосфоробактерина не только связан с доставкой усвояемых фосфатов к растениям, но обусловлен также действием биологически активных веществ (тиамина, биотина, никотиновой и пантотеновой кислот, витамина В12 и др.). Данные биологически активные вещества, попадая на поверхность семян при инокуляции, а затем в ткани растения, стимулируют фосфорное и азотное питание, то есть благоприятно действуют на развитие растений на первых этапах.

 

<== предыдущая лекция | следующая лекция ==>
Биогазовые установки и использование их в мире | Биологические методы и препараты для борьбы с вредителями и болезнями сельскохозяйственных растений и животных
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 2118; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.