Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Явление и закон самоиндукции




ИНДУКТИВНОСТЬ СОЛЕНОИДА

ИНДУКТИВНОСТЬ

Пусть по замкнутому контуру течёт постоянный ток силой I. Этот ток создаёт вокруг себя магнитное поле, которое пронизывает площадь, охватываемую проводником, создавая магнитный поток. Известно, что магнитный поток Ф Bпропорционален модулю индукции магнитного поля B, а модуль индукции магнитного поля, возникающего вокруг проводника с током, пропорционален силе тока I при отсутствии ферромагнетиков. Из этого следует Ф B ~ B ~ I, т.е.

Ф B = LI. (1)

Коэффициент пропорциональности L между силой тока и магнитным потоком, создаваемым этим током через площадь, ограниченную проводником, называют индуктивностью проводника.

В системе единиц СИ индуктивность измеряется в генри (Гн).

Рассмотрим индуктивность соленоида длиною l, с поперечным сечением S и с общим числом витков N, заполненного веществом с магнитной проницаемостью . При этом возьмём соленоид такой длины, чтобы его можно было рассматривать как бесконечно длинный. При протекании по нему тока силой I внутри него создаётся однородное магнитное поле, направленное перпендикулярно к плоскостям витков. Модуль магнитной индукции этого поля находится по формуле

B = m0m nI, (2)

где m0 магнитная постоянная, n — число витков на единице длины соленоида. Магнитный поток Ф Bчерез любой виток соленоида равен Ф B= BS, а полный поток Y через все витки соленоида будет равен сумме магнитных потоков через каждый виток, т.е. Y = NФ B= NBS. Учитывая (2) и что N = nl, получаем: Y = m0m n 2 lSI = = m0m n 2 VI, так как lS = V ¾ объём соленоида. Сравнивая эту формулу с (1), приходим к выводу, что индуктивность соленоида равна

L = mm0 n 2 V, (3)

Явление возникновения э.д.с. в том же проводнике, по которому течёт переменный ток, называют самоиндукцией, а саму э.д.с. ¾ э.д.с. самоиндукции. Возникновение э.д.с. самоиндукции объясняется следующим. Переменный ток, проходящий по проводнику, порождает вокруг себя переменное магнитное поле, которое, в свою очередь, создаёт магнитный поток, изменяющийся со временем, через площадь, ограниченную проводником.

Согласно явлению электромагнитной индукции, это изменение магнитного потока и приводит к появлению э.д.с. Значение э.д.с. самоиндукции найдём, подставляя выражение (1) в закон электромагнитной индукции (см. (14) лекцию №9) и полагая, что L = const: Итак,

(4)

Итак, э.д.с. самоиндукции в проводнике пропорциональна скорости изменения силы тока, текущего по нему.

Под действием э.д.с. самоиндукции создаётся индукционный ток, называемый током самоиндукции.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ

+
L
R
e
П
 
 
Рис. 1

Пусть в электрической цепи (рис. 1) протекает постоянный ток силой I. Если отключить источник тока и замкнуть цепь (переключатель П перевести в положение 2), то в ней некоторое время будет течь убывающий ток, обусловленный э.д.с. самоиндукции e s, равной . Элементарная работа, совершаемая э.д.с. самоиндукции по переносу по цепи элементарного заряда dq = I·dt, равна Сила тока изменяется от I до 0. Поэтому, интегрируя это выражение в указанных пределах, получаем работу, совершаемую э.д.с. самоиндукции за время, в течение которого происходит исчезновение магнитного поля: Совершение этой работы сопровождается нагреванием проводника и окружающей среды и исчезновением магнитного поля, которое первоначально существовало вокруг проводника. Поскольку никаких других изменений в окружающей среде не происходит, то можно заключить, что магнитное поле обладает энергией, за счёт которой и совершается работа. Итак, энергия магнитного поля, существующего вокруг проводников с током, равна

W B = LI 2 / 2. (5)

Выразим энергию магнитного поля через величины, характеризующие само поле. Проделаем это на примере соленоида. Из формул (2) и (3) I = B/ (mm0 n) и L = mm0 n 2 V. Подставляя эти выражения в (5), получаем, что

(6)

Магнитное поле внутри соленоида однородное (= const). Поэтому объёмная плотность энергии w B магнитного поля, т.е. энергия единицы объёма поля, внутри соленоида равна

w B = W B /V = B 2 / (2mm0). (7)

Эта формула справедлива и в случае неоднородных статических и переменных магнитных полей.

 

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ

ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Из закона Фарадея для электромагнитной индукции

(8)

следует, что при всяком изменении магнитного потока, пронизывающего площадь, охватываемую проводником, в нём возникает э.д.с. индукции, под действием которой в проводнике появляется индукционный ток, если проводник замкнутый.

Для объяснения э.д.с. индукции Максвелл выдвинул гипотезу, что переменное магнитное поле создаёт в окружающем пространстве электрическое поле. Это поле действует на свободные заряды проводника, приводя их в упорядоченное движение, т.е. создавая индукционный ток. Таким образом, замкнутый проводящий контур является своеобразным индикатором, с помощью которого и обнаруживается данное электрическое поле. Обозначим напряжённость этого поля через . Тогда э.д.с. индукции

. (9)

(см. понятие э.д.с. источника). Объединяя соотношения (8) и (9), получаем

(10)

Из электростатики известно, что циркуляция напряжённости электростатического поля равна нулю, т.е. где — напряжённость электростатического поля. Это соотношение является условием потенциальности электростатического поля. Однако из (10) следует, что , т.е. электрическое поле, возбуждаемое изменяющимся со временем магнитным полем, является вихревым (не потенциальным).

Следует отметить, что линии напряжённости электростатического поля начинаются и заканчиваются на зарядах, создающих поле, а линии напряжённости вихревого электрического поля всегда замкнутые.

ТОК СМЕЩЕНИЯ

Как указывалось, Максвелл высказал гипотезу, что переменное магнитное поле создаёт вихревое электрическое поле. Он сделал и обратное предположение: переменное электрическое поле должно вызывать возникновение магнитного поля. В дальнейшем эти обе гипотезы получили экспериментальное подтверждение в опытах Герца. Появление магнитного поля при изменении электрического поля можно трактовать так, как будто бы в пространстве возникает электрический ток. Этот ток был назван Максвеллом током смещения. Ток смещения в отличие от тока проводимости в металлах не связан с движением электрических зарядов, а обусловлен переменным электрическим полем. В действительности никакого тока нет, а есть лишь изменяющееся со временем электрическое поле, которое и создаёт магнитное поле. Однако использование этого термина удобно.

Выясним, от чего зависит ток смещения на простом примере. Рассмотрим плоский конденсатор, на обкладках которого имеются заряды q противоположного знака, равномерно распределённые по обкладкам с поверхностной плотностью, равной  = q/S, где S — площадь обкладки. Внутри конденсатора возникает электрическое поле. Напряжённость этого поля равна

. (11)

I пр
–q
+q
I см
Рис. 2

Замкнём обкладки конденсатора проводником (рис. 2). Это приводит к возникновению тока проводимости в проводнике, приводящего к уменьшению заряда на обкладках конденсатора, следовательно, и к ослаблению электрического поля внутри конденсатора. Изменение электрического поля вызывает появление магнитного поля между пластинами конденсатора, обусловленного как бы током смещения силой I cм, текущего внутри конденсатора. Сила этого тока должна равняться силе тока проводимости I пр, поскольку электрическая цепь не имеет разветвлений. Поэтому I cм = I пр. Силу тока проводимости находим по формуле Подставляя в это выражение q, найденное из (11), и вынося постоянные за знак производной, получаем силу тока смещения: Плотность тока смещения будет равна

(12)

В общем случае напряжённость электрического поля может зависеть от координат и времени. Поэтому в выражении (36.2) производную надо заменить частной производной . Тогда

(13)

и сила тока смещения через площадку S, перпендикулярную к направлению этого тока, равна

. (14)

Ток смещения может возникать не только в вакууме или диэлектрике, но и в проводниках, по которым течёт переменный ток. Однако в этом случае он пренебрежимо мал по сравнению с током проводимости.

Максвелл ввёл понятие полного тока. Сила I полного тока равна сумме сил I при I смтоков проводимости и смещения, т.е. I = I пр + I см. Используя (14), получаем:

(15)

где S ¾ площадь поперечного сечения проводника.

УРАВНЕНИЯ МАКСВЕЛЛА

Введение двух гипотез о существовании вихревого электрического поля и тока смещения позволили Максвеллу создать единую теорию электромагнетизма. В основе этой теории находятся четыре уравнения, названные уравнениями Максвелла, которые играют в учении об электромагнетизме такую же роль, как законы Ньютона в классической механике. Рассмотрим эти уравнения.

1. Первое уравнение. Согласно (10), циркуляция напряжённости вихревого электрического поля равна

(16)

Но Тогда где (— проекция производной по времени индукции магнитного поля на направление нормали к площади контура. Поскольку в общем случае индукция магнитного поля зависит от координат и времени, то надо заменить частной производной . С учётом этого уравнение (16) запишется

(17)

Из этого уравнения следует, что источником электрического поля является изменяющееся со временем магнитное поле.

2. Второе уравнение. Максвелл обобщил закон полного тока, введя в её правую часть полный ток , где S ¾ площадь замкнутого контура длиною l. Учитывая это, закон полного тока запишется

(18)

поскольку Это уравнение показывает, что магнитное поле может создаваться как движущимися зарядами (электрическим током), так и переменным электрическим полем.

3. В качестве третьего и четвертого уравнений Максвелл взял теорему Гаусса для электростатического и магнитного полей

(19) (20)

Соотношение (19) свидетельствует о том, что линии напряжённости электростатического поля начинаются и кончаются на электрических зарядах, а из (20) следует, что линии магнитной индукции всегда замкнуты, т.е. в природе не существует магнитных зарядов. Необходимо отметить, что нумерация уравнений Максвелла произвольная.

Из уравнений (17) и (18) вытекает, что переменное магнитное поле всегда связано с создаваемым им электрическим полем, и наоборот, переменное электрическое поле связано с создаваемым им магнитным полем. Таким образом, эти поля взаимосвязаны и образуют единое электромагнитное поле. Поэтому отдельное рассмотрение электрических и магнитных полей носит относительный характер. Так, например, если электрическое поле создаётся неподвижными зарядами в одной системе отсчёта, то относительно другой они могут двигаться и, следовательно, порождают одновременно и электрическое и магнитное поля. Уравнения Максвелла являются основой единой теории электрических и магнитных явлений.

 

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

1. Электромагнитные волны являются одним из наиболее важных типов волн, которые широко используются на практике. В отличие от механических волн для их распространения не нужно упругой среды. Они могут распространяться и в вакууме. Два фундаментальных закона природы лежат в основе существования электромагнитных волн: закон электромагнитной индукции Фарадея, согласно которому изменяющееся магнитное поле создаёт электрическое поле, и закон Максвелла, по которому переменное электрическое поле ответственно за возникновение магнитного поля. Возникшее в какой-либо точке пространства изменяющееся, например, магнитное поле порождает изменяющееся электрическое поле, которое, в свою очередь, вызывает появление переменного магнитного поля и т.д. Возникает электромагнитное поле, которое распространяется в пространстве. При этом в каждой точке пространства векторы напряжённости электрического поля и индукции магнитного поля взаимно перпендикулярны и расположены в плоскости, перпендикулярной к направлению распространения волны.

2. Виды электромагнитных волн. Существованием электромагнитных волн объясняются многие явления, наблюдаемые в природе, которые часто не похожи друг на друга в своих проявлениях. Оказалось, что видимый свет, радиоволны, рентгеновские лучи, -лучи имеют одну и ту же природу ¾ это электромагнитные волны, различающиеся только длиной волны. Электромагнитные волны в принципе могут иметь любую длину волны в вакууме (или частоту n, которая связана с uсоотношением n = с /, где с = 3×108 м/с ¾ скорость света в вакууме) от нуля до бесконечности. Весь диапазон длин волн можно приближённо разделить на ряд областей, каждая из которых связана с определённым видом излучения. Различные виды электромагнитных волн приведены в табл. 2, где приведены также приближённые значения частот и длин волн их

Таблица 2

Частота, Гц Диапазон волн Длина волн, м
103 —1012 Радиоволны 3·105 — 3·10–4
1012 — 1014 Инфракрасное излучение 3·10–4 — 8·10–7
4·1014 — 7,5·1014 Видимый свет 7,5·10–7 — 4·10–7
7,5·1014 — 1017 Ультрафиолетовое излучение 4·10–7 — 10–9
1017 — 1020 Рентгеновское излучение 10–9 — 10–12
1020 — 1023 излучение 10–12 — 10–15

границ, поскольку соседние диапазоны перекрывают друг друга. Классификация различных видов электромагнитных волн, приведённая в таблице, основывается не только на их проявлениях, но и на способе их генерации. Электромагнитные волны с низкими частотами (n < 103 Гц) генерируются переменными электрическими токами соответствующей частоты и не имеют практического значения. Радиоволны, используемые для радио и телепередач, генерируются при колебательных движениях зарядов в колебательном контуре, присоединённом к антенне. Инфракрасные (ИК) волны, диапазон которых примыкает к радиоволнам, возникают вследствие колебаний ионов кристаллических решёток, к которым подводится тепловая энергия (излучение ИК волн нагретой металлической спиралью в бытовом нагревательном рефлекторе). Очень узкий диапазон занимает видимый свет (от 400 до 750 нм).

Электромагнитные колебания, невидимые человеческим глазом, с более высокими частотами создают ультрафиолетовое излучение. Видимый свет и ультрафиолетовое излучение генерируются возбуждёнными валентными электронами атомов за счёт энергии, подводимой извне (свечение газонаполненной трубки под действием электрического тока). Рентгеновское излучение возникает при резком торможении потока электронов препятствиями. Пульсации ядерного заряда приводят к созданию g-излучения.

ВОЛНОВЫЕ СВОЙСТВА СВЕТА

С точки зрения волновой теории свет представляет собой электромагнитные волны с частотой , лежащей в интервале от 0,4×1015 до 0,75×1015 Гц. Диапазон световых волн чаще выражают в длинах волн в вакууме (практически в воздухе). Используя соотношение длины u световой волны с частотой колебания (u = c/ n, где c = 3×108 м/с — скорость света в вакууме), находим, что длины волн света в вакууме заключены в пределах от 0,75 до 0,4 мкм. Установлено, что цветовое воздействие света на глаз человека обусловлено его частотой. Так, световые волны с частотой 0,4·1015 Гц воспринимаются как красный свет, а с частотой 0,75·1015 Гц — как фиолетовый. Показано также, что световые волны, отличающиеся по длине волны менее чем на 2 нм, воспринимаются как одноцветные.

ИНТЕРФЕРЕНЦИЯ ВОЛН

Интерференцией волн называют явление усиления и ослабления волн в определённых точках пространства при их наложении. Интерферировать могут только когерентные волны. Когерентными называются волны (источники), частоты которых одинаковы и разность фаз колебаний не зависит от времени. Геометрическое место точек, в которых происходит усиление или ослабление волн соответственно называют интерференционным максимумом или интерференционным минимумом, а их совокупность носит название интерференционной картины. В связи с этим можно дать иную формулировку явления. Интерференцией волн называется явление наложения когерентных волн с образованием интерференционной картины.

Рассмотрим процесс наложения двух когерентных волн любой природы (механические, электромагнитные). Пусть эти волны создаются когерентными источниками O 1 и O 2, находящимися в одной среде, амплитуды и циклические частоты которых одинаковы и равны А и , а начальные фазы равны нулю. Расстояние между источниками О 1 и О 2 намного меньше расстояний х 1 и х 2от источников до точки наблюдения М. Тогда волны от источников О 1 и О 2 распространяются практически параллельно, и вызываемые ими колебания в точке M (рис. 3) находим, используя уравнение плоской монохроматической волны (см. (1)):

(4)

где x1 и x2 — мгновенные значения колеблющейся величины; — длина волны в данной среде; x 1 и x 2 — расстояние от источников до точки наложения волн. Результирующее колебание s равно алгебраической сумме колебаний, обусловленных отдельными волнами, поскольку колебания происходят в одном направлении, т.е. Используя соотношение и полагая и , получаем: Выражение

(5)

M
х 2
х 1
О 2
О 1
Рис. 3

не зависит от времени. Поэтому его можно рассматривать как амплитуду результирующих колебаний, происходящих в точке М. В формуле (5) взята абсолютная величина, так как амплитуда по определению всегда положительная. С учётом этого уравнение колебаний в этой точке запишется в виде Таким образом, в произвольной точке М происходят гармонические колебания с той же циклической частотой w, амплитуда которых зависит от геометрической разности (х 2 х 1) хода волн. Найдём условия усиления и ослабления колебаний в различных точках пространства. Очевидно, что амплитуда В результирующих колебаний будет максимальной в тех точках, для которых Это возможно, если , где m = 0, ±1, ±2, ¼. Отсюда

x 2 - x 1 = m  (6)

где m называют порядком интерференционного максимума. Из этого выражения следует, что когерентные волны, распространяющиеся в одной среде, усиливаются в точках, для которых геометрическая разность хода равна целому числу длин волн. Следовательно, соотношение (6) является условием интерференционного максимума.

Интенсивность результирующей волны будет наименьшей во всех точках,

для которых т.е. когда Отсюда

x 2 - x 1 = (m + 1 / 2), (7)

т.е. когерентные волны, распространяющиеся в одной среде, ослабляются в точках, для которых геометрическая разность хода равна полуцелому числу длин волн. Поэтому соотношение (7) является условием интерференционного минимума.

Изложенная теория интерференции справедлива для волн любой природы, в том числе для световых волн. Однако интерференционная картина световых волн может наблюдаться только в специальных условиях. Действительно, при наложении света одинакового цвета, испускаемого двумя независимыми источниками, например лампами накаливания, интерференция не происходит, поскольку эти источники некогерентные. В этом случае наблюдается суммирование интенсивностей световых волн. Для того чтобы наблюдать интерференцию света, надо излучение от одного и того же источника разделить на два пучка и заставить их затем попасть на экран различными путями. Это достигается за счёт отражения и преломления света. Рассмотрим один из методов наблюдения интерференции световых волн — бипризму Френеля. Бипризма (БП) состоит из двух стеклянных призм с малыми преломляющими углами, сложенных своими основаниями. Источником света служит ярко освещённая щель О, установленная параллельно ребру бипризмы (рис. 4). После преломления в бипризме пучок света разделяется на два пучка когерентных волн. В области АБ экрана Э волны налагаются, и возникает интерференционная картина в виде светлых и тёмных параллельных интерференционных полос.

О
О1
О2
Б
А
Рис. 4

ДИФРАКЦИЯ СВЕТА

Э
С интерференцией волн тесно связано другое важное явление — дифракция. Дифракцией называется явление огибания волнами препятствий. Дифракция зависит от соотношения размеров препятствия и длины волны. Она проявляется заметным образом, если размеры препятствий и длины волны соизмеримы. Поэтому дифракция звуковых волн наблюдается легко, а в случае света, длина волны которого много меньше размеров препятствий, наблюдается в специальных условиях. Так, можно через приоткрытую дверь слышать собеседников в соседней комнате, даже если вы их не видите. На языке оптики дифракция означает проникновение света в область геометрической тени.

 




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 3149; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.058 сек.