Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Практическое применение электромагнитной индукции




Явление электромагнитной индукции используется, прежде всего, для преобразования механической энергии в энергию электрического тока. Для этой цели применяются генераторы переменного тока (индукционные генераторы). Простейшим генератором переменного тока является проволочная рамка, вращающаяся равномерно с угловой скоростью w= constв однородном магнитном поле с индукцией В (рис. 4.5). Поток магнитной индукции, пронизывающий рамку площадью S, равен

При равномерном вращении рамки угол поворота , где – частота вращения. Тогда

По закону электромагнитной индукции ЭДС, наводимая в рамке при
ее вращении,

Если к зажимам рамки с помощью щеточно-контактного аппарата подключить нагрузку (потребителя электроэнергии), то через нее потечет переменный ток.

Для промышленного производства электроэнергии на электрических станциях используются синхронные генераторы (турбогенераторы, если станция тепловая или атомная, и гидрогенераторы, если станция гидравлическая). Неподвижная часть синхронного генератора называется статором, а вращающаяся – ротором (рис. 4.6). Ротор генератора имеет обмотку постоянного тока (обмотку возбуждения) и является мощным электромагнитом. Постоянный ток, подаваемый на
обмотку возбуждения через щеточно-контактный аппарат, намагничивает ротор, и при этом образуется электромагнит с северным и южным полюсами.

На статоре генератора расположены три обмотки переменного тока, которые смещены одна относительно другой на 1200 и соединены между собой по определенной схеме включения.

При вращении возбужденного ротора с помощью паровой или гидравлической турбины его полюсы проходят под обмотками статора, и в них индуцируется изменяющаяся по гармоническому закону электродвижущая сила. Далее генератор по определенной схеме электрической сети соединяется с узлами потребления электроэнергии.

Если передавать электроэнергию от генераторов станций к потребителям по линиям электропередачи непосредственно (на генераторном напряжении, которое относительно невелико), то в сети будут происходить большие потери энергии и напряжения (обратите внимание на соотношения , ). Следовательно, для экономичной транспортировки электроэнергии необходимо уменьшить силу тока. Однако, так как передаваемая мощность при этом остается неизменной, напряжение должно
увеличиться во столько же раз, во сколько раз уменьшается сила тока.

У потребителя электроэнергии, в свою очередь, напряжение необходимо понизить до требуемого уровня. Электрические аппараты, в которых напряжение увеличивается или уменьшается в заданное количество раз, называются трансформаторами. Работа трансформатора также основана на законе электромагнитной индукции.

Рассмотрим принцип работы двухобмоточного трансформатора (рис. 4.7). При прохождении переменного тока по первичной обмотке вокруг нее возникает переменное магнитное поле с индукцией В, поток которого также переменный

Сердечник трансформатора служит для направления магнитного потока (магнитное сопротивление воздуха велико). Переменный магнитный поток, замыкающийся по сердечнику, индуцирует в каждой из обмоток переменную ЭДС:

Тогда

У мощных трансформаторов сопротивления катушек очень малы,
поэтому напряжения на зажимах первичной и вторичной обмоток приблизительно равны ЭДС:

где k – коэффициент трансформации. При k <1 () трансформатор является повышающим, при k >1 () трансформатор является понижающим.

При подключении к вторичной обмотке трансформатора нагрузки, в ней потечет ток . При увеличении потребления электроэнергии по закону
сохранения энергии должна увеличиться энергия, отдаваемая генераторами станции, то есть

откуда

Это означает, что, повышая с помощью трансформатора напряжение
в k раз, удается во столько же раз уменьшить силу тока в цепи (при этом джоулевы потери уменьшаются в k 2 раз).

 

Тема 17. Основы теории Максвелла для электромагнитного поля. Электромагнитные волны

В 60-х гг. XIX в. английский ученый Дж. Максвелл (1831-1879) обобщил экспериментально установленные законы электрического и магнитного полей и создал законченную единую теорию электромагнитного поля. Она позволяет решить основную задачу электродинамики: найти характеристики электромагнитного поля заданной системы электрических зарядов и токов.

Максвелл выдвинул гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле , циркуляция которого и является причиной возникновения ЭДС электромагнитной индукции в контуре:

 

(5.1)

 

Уравнение (5.1) называют вторым уравнением Максвелла. Смысл этого уравнения заключается в том, что изменяющееся магнитное поле порождает вихревое электрическое, а последнее в свою очередь вызывает в окружающем диэлектрике или вакууме изменяющееся магнитное поле. Поскольку магнитное поле создается электрическим током, то, согласно Максвеллу, вихревое электрическое поле следует рассматривать как некоторый ток,
который протекает как в диэлектрике, так и в вакууме. Максвелл назвал этот ток током смещения.

Ток смещения, как это следует из теории Максвелла
и опытов Эйхенвальда, создает такое же магнитное поле, как и ток проводимости.

В своей теории Максвелл ввел понятие полного тока, равного сумме
токов проводимости и смещения. Следовательно, плотность полного тока

По Максвеллу полный ток в цепи всегда замкнут, то есть на концах проводников обрывается лишь ток проводимости, а в диэлектрике (вакууме) между концами проводника имеется ток смещения, который замыкает ток проводимости.

Введя понятие полного тока, Максвелл обобщил теорему о циркуляции вектора (или ):

(5.6)

Уравнение (5.6) называется первым уравнением Максвелла в интегральной форме. Оно представляет собой обобщенный закон полного тока и выражает основное положение электромагнитной теории: токи смещения создают такие же магнитные поля, как и токи проводимости.

Созданная Максвеллом единая макроскопическая теория электромагнитного поля позволила с единой точки зрения не только объяснить электрические и магнитные явления, но предсказать новые, существование которых было впоследствии подтверждено на практике (например, открытие электромагнитных волн).

Обобщая рассмотренные выше положения, приведем уравнения, составляющие основу электромагнитной теории Максвелла.

1. Теорема о циркуляции вектора напряженности магнитного поля:

Это уравнение показывает, что магнитные поля могут создаваться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

2. Электрическое поле может быть как потенциальным (), так и вихревым (), поэтому напряженность суммарного поля . Так как циркуляция вектора равна нулю, то циркуляция вектора напряженности суммарного электрического поля

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и меняющиеся во времени магнитные поля.

3. ,

4.

где – объемная плотность заряда внутри замкнутой поверхности; – удельная проводимость вещества.

Для стационарных полей (E= const, B= const) уравнения Максвелла принимают вид

то есть источниками магнитного поля в данном случае являются только
токи проводимости, а источниками электрического поля – только электрические заряды. В этом частном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.

Используя известные из векторного анализа теоремы Стокса и Гаусса, можно представить полную систему уравнений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

(5.7)

 

Очевидно, что уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе
существуют электрические заряды, но нет зарядов магнитных.

Уравнения Максвелла – наиболее общие уравнения для электрических
и магнитных полей в покоящихся средах. Они играют в учении об электромагнетизме ту же роль, что и законы Ньютона в механике.

Электромагнитной волной называют переменное электромагнитное поле, распространяющееся в пространстве с конечной скоростью.

Существование электромагнитных волн вытекает из уравнений Максвелла, сформулированных в 1865 г. на основе обобщения эмпирических законов электрических и магнитных явлений. Электромагнитная волна образуется вследствие взаимной связи переменных электрического и магнитного полей – изменение одного поля приводит к изменению другого, то есть чем быстрее меняется во времени индукция магнитного поля, тем больше напряженность электрического поля, и наоборот. Таким образом, для образования интенсивных электромагнитных волн необходимо возбудить электромагнитные колебания достаточно высокой частоты. Фазовая скорость электромагнитных волн определяется
электрическими и магнитными свойствами среды:

В вакууме () скорость распространения электромагнитных волн совпадает со скоростью света; в веществе , поэтому скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме.

Электромагнитные волны являются поперечными волнами
колебания векторов и происходят во взаимно перпендикулярных плоскостях, причем векторы , и образуют правовинтовую систему. Из уравнений Максвелла также следует, что в электромагнитной волне векторы и всегда колеблются в одинаковых фазах, а мгновенные значения Е и Н в любой точке связаны соотношением

 

Уравнения плоской электромагнитной волны в векторной форме:

(6.66)

На рис. 6.21 показан «моментальный снимок» плоской электромагнитной волны. Из него видно, что векторы и образуют с направлением распространения волны правовинтовую систему. В фиксированной точке пространства векторы напряженности электрического и магнитного полей изменяются со временем по гармоническому закону.

Для характеристики переноса энергии любой волной в физике введена векторная величина, называемая плотностью потока энергии . Она численно равна количеству энергии, переносимой в единицу времени через единичную площадку, перпендикулярную к направлению, в котором
распространяется волна. Направление вектора совпадает с направлением переноса энергии. Величину плотности потока энергии можно получить, умножив плотность энергии на скорость волны

Плотность энергии электромагнитного поля слагается из плотности энергии электрического поля и плотности энергии магнитного поля:

или

(6.67)

Умножив плотность энергии электромагнитной волны на ее фазовую скорость, получим плотность потока энергии

(6.68)

Векторы и взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему. Поэтому направление
вектора совпадает с направлением переноса энергии, а модуль этого вектора определяется соотношением (6.68). Следовательно, вектор плотности потока энергии электромагнитной волны можно представить как векторное произведение

(6.69)

Вектор называют вектором Умова-Пойнтинга.

 

 

 




Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 3695; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.045 сек.