Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Квантовая оптика

Тема 25. Тепловое излучение

Электромагнитное излучение, возникающее за счет внутренней энергии излучающего тела и зависящее только от температуры и оптических свойств этого тела, называется тепловым.

Тепловым излучателем может быть любое тело, нагретое до некоторой температуры. Если температура излучателя достаточно высока, тепловое излучение может быть видимым – так, стальной расплав светится, а по мере его остывания свечение прекращается.

Излучение, наряду с работой и теплопередачей – одна из форм обмена энергией: излучая, тепловой источник теряет энергию, поглощая излучение – получает ее. В результате одновременного процесса излучения и поглощения тело приходит в равновесие с окружающей средой, его внутренняя энергия (а значит, температура) стабилизируется. Такая установившееся температура теплового излучателя называется термодинамической, а излучение при этой температуре – равновесным.

Способность различных тел излучать и поглощать энергию различна. Излучательной способностью (энергетической светимостью, излучательностью) тела Rэ называется энергия, излучаемая в единицу времени с единицы поверхности теплового излучателя:

(1.1)

где Р – мощность излучения; S – площадь излучающей поверхности.

Тепловые излучатели в различных интервалах спектра электромагнитного излучения излучают по-разному, поэтому вводят спектральную плотность энергетической светимости rλ – количество энергии, излучаемой в единицу времени с единицы поверхности в единичном интервале длин волн λ.

Поглощательной способностью, или коэффициентом поглощения теплового излучателя называется отношение , показывающее, какую долю от упавшего на тело излучения оно поглощает.

Вообще говоря, и коэффициент поглощения у тепловых излучателей для различных длин волн различен, но есть тела, которые во всех областях спектра поглощают одинаково – такие тела называют серыми.

Тело, поглощающее все упавшее на него излучение, называется абсолютно черным (АЧТ). Для него интегральный коэффициент поглощения равен единице:

.

Все реальные тепловые излучатели являются серыми, они характеризуются коэффициентом серости (черноты) k, который показывает, во сколько раз поглощательная способность данного тела, меньше, чем у абсолютно черного тела при той же температуре:

.

Все законы теплового излучения, которые будут рассмотрены ниже, справедливы для равновесного излучения абсолютно черного излучателя.

Закон Кирхгофа. Поскольку излучение равновесное, тело, которое при данной температуре поглощает больше энергии, излучать тоже должно больше. Поэтому для теплового излучателя отношение спектральной плотности энергетической светимости тела к его спектральному коэффициенту поглощения не зависит от материала тела и равно спектральной плотности энергетической светимости абсолютно черного тела при данной температуре:

, (1.2)

Следовательно, при данной температуре сильнее излучают те тела, которые имеют больший коэффициент поглощения.

Закон Стефана – Больцмана. Законы Вина.

Экспериментальные кривые распределения энергии в спектре излучения абсолютно черного тела, то есть зависимости спектральной плотности энергетической светимости от длины волны λ при постоянной температуре Т, называемые кривыми Кирхгофа, представлены на рисунке. Из рисунка видно, что спектр абсолютно черного тела всегда является сплошным, то есть в спектре представлен непрерывный ряд длин волн, но коротковолнового излучения в спектре АЧТ практически нет, а длинноволнового – много.

Поскольку энергетическая светимость АЧТ , площадь под кривой Кирхгофа пропорциональна излучательной способности АЧТ. С увеличением температуры излучательная способность АЧТ растет.

Закон Стефана – Больцмана: энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его термодинамической температуры

, (1.3)

где постоянная Стефана-Больцмана.

Для реальных тепловых излучателей , где k – коэффициент серости.

Из рис. 1.1 следует, что для каждой температуры кривые Кирхгофа имеют максимум , и что с ростом температуры максимум смещается в сторону более коротких длин волн, то есть б о льших частот. Немецкий физик Вин установил, что длина волны , соответствующая максимальному значению спектральной плотности энергетической светимости АЧТ обратно пропорциональна его термодинамической температуре Т:

, (1.4)

где .

Это первый закон Вина, или закон смещения Вина.

Второй закон Вина позволяет определить само значение максимальной спектральной плотности энергетической светимости АЧТ при данной температуре Т:

, (1.5)

где .

Гипотеза и формула Планка.

Попытки получить формулу, позволяющую математически описать кривую Кирхгофа, долгое время терпели неудачу.

Так, по формуле Релея-Джинса

, (1.6)

где – частота; – постоянная Больцмана; с – скорость света; Т – абсолютная температура; – мощность излучения АЧТ в единичном интервале частот.

Было получено хорошее совпадение с экспериментом в области малых частот (то есть больших длин волн), но согласно ей в области бесконечно больших частот АЧТ должно излучать бесконечно много, а на самом деле доля высокочастотного излучения в спектре тепловых излучателей очень мала (например, лампа накаливания не излучает ультрафиолета). Этот факт так поразил физиков, что они назвали его «ультрафиолетовой катастрофой».

Классическая теория излучения как непрерывной электромагнитной волны не могла объяснить, почему кривые Кирхгофа имеют максимум – ведь по волновой теории энергия, переносимая волной, возрастает с ростом частоты. Тупиковую ситуацию разрешил в 1890 г. немецкий физик-теоретик Макс Планк, предположивший, что электромагнитные колебания излучаются атомами не непрерывно, а дискретными порциями (квантами), энергия которых пропорциональна частоте

, (1.7)

где – постоянная Планка.

Планк предложил формулу для спектральной плотности энергетической светимости АЧТ, хорошо описывающую кривые Кирхгофа:

или (1.8)

Фундаментальность гипотезы Планка была подтверждена тем, что эмпирические законы излучения АЧТ могут быть выведены из формулы Планка (1.8).

 

Тема 26. Фотоэлектрический эффект

Фотоэлектрический эффект. Виды фотоэффекта. Опыты Столетова. Законы внешнего фотоэффекта. Уравнение Эйнштейна. Применение фотоэффекта.

Фотоэлектрический эффект – вырывание электронов из атомов и молекул вещества под действием света (излучения) – впервые был обнаружен в 1887 г. Г. Герцем.

Если электроны, выбитые светом, вылетают за пределы вещества, фотоэффект называют внешним, он наблюдается главным образом у металлов. Если же оторванные от своих атомов или молекул электроны остаются внутри освещаемого вещества в качестве свободных, фотоэффект называют внутренним, он наблюдается у некоторых полупроводников и в меньшей степени у диэлектриков.

Явление внешнего фотоэффекта впервые было исследовано А.Г. Столетовым в 1890 г. Схема опытов Столетова по исследованию фотоэффекта приведена на рис. 1.2.

Излучение через окно С вакуумной трубки попадает на исследуемую пластинку К, служащую катодом. Анодом служит вспомогательный электрод А. Напряжение между катодом и анодом регулируется потенциометром R и регистрируется вольтметром V. Источник напряжения, к которому подключен потенциометр, представляет собой две аккумуляторных батареи, включенные встречно, что позволяет менять значение и знак напряжения между катодом и анодом.

Если пластинку К освещать через окно С, то свет вырвет из пластинки электроны, называемые фотоэлектронами. Под действием электрического поля фотоэлектроны движутся к аноду А, замыкая цепь, и гальванометр G показывает наличие тока, который называют фототоком, так как если катод не освещать, ток в цепи отсутствует. Изменяя при помощи потенциометра R величину и знак напряжения, Столетов получил зависимости фототока от напряжения при неизменной величине светового потока Ф, вид которых показан на рис. 1.3.

Из рисунка видно, что ток в цепи возникает и в том случае, когда анодное напряжение равно нулю и даже при небольшом отрицательном (задерживающем) напряжении на аноде. Это связано с тем, что вылетающие из катода фотоэлектроны, обладают кинетической энергией, за счет которой совершается работа против сил задерживающего поля. Если поле тормозит электроны, то при некотором значении напряжения Uз, называемом задерживающим потенциалом, фотоэлектроны полностью растрачивают на работу против сил поля полученную при выходе из катода кинетическую энергию и не достигают анода – фототок становится равным нулю. Зная величину задерживающего потенциала, можно определить кинетическую энергию фотоэлектронов, а значит, и их скорость.

Если электрическое поле между катодом и анодом является ускоряющим, то при некотором значении напряжения все фотоэлектроны достигают анода, и через гальванометр идет ток, зависящий только от числа электронов, вырываемых светом с поверхности катода за единицу времени. Этот ток называют током насыщения Iн. Из рисунка видно, что величина тока насыщения зависит от интенсивности светового потока, падающего на катод.

Опытным путем были сформулированы следующие законы фотоэффекта:

1. Сила фототока насыщения, возникающая при освещении монохроматическим светом, пропорциональна световому потоку, падающему на катод.

2. Скорость фотоэлектронов увеличивается с ростом частоты (с уменьшением длины волны) падающего света и не зависит от интенсивности светового потока.

3. Независимо от интенсивности светового потока фотоэффект начинается только при определенной для данного металла минимальной частоте (максимальной длине волны) света, называемой красной границей фотоэффекта.

Классическая теория излучения как непрерывной электромагнитной волны рассматривала фотоэффект следующим образом: падающая на металл электромагнитная волна приводит электроны, находящиеся вблизи поверхности металла в колебательное движение с амплитудой, пропорциональной интенсивности падающего света. В результате электрон приобретает энергию, достаточную для преодоления силы притяжения положительных ионов и вылетает из катода. Чем больше интенсивность падающей световой волны, тем больше электронов получат энергию, достаточную для вылета из катода, и тем больше будет ток насыщения.

Такая картина объясняла первый закон фотоэффекта, но из этих же рассуждений следовало, что кинетическая энергия вылетающих электронов также должна быть пропорциональна интенсивности падающего света, а это противоречит второму закону фотоэффекта. Кроме того, будь свет непрерывной электромагнитной волной, внешний фотоэффект, практически мгновенный, должен был бы обладать инерцией – ведь на «раскачку» электронов электромагнитной волной требуется некоторое время. Красной границы по классической теории тоже не должно быть – фотоэффект должен был бы наблюдаться на любых частотах, но при разных освещенностях, так как энергия волны пропорциональна не только квадрату амплитуды, но и квадрату частоты.

Чтобы объяснить эти загадочные закономерности фотоэффекта А. Эйнштейн использовал и развил квантовую гипотезу Планка: он предположил, что излучение не только испускается, но и распространяется, и поглощается также отдельными порциями – квантами, каждый из которых локализован в пространстве и имеет энергию , пропорциональную частоте.

По Эйнштейну, внешний фотоэффект представляет собой взаимодействие электрона с одним квантом. Электрон, находящийся внутри вещества, поглотив квант излучения, либо покинет вещество, либо останется внутри него. Это зависит от того, что больше: энергия поглощенного кванта или работа выхода электрона. Если энергия кванта больше работы выхода Ав, электрон сможет покинуть катод, совершив работу выхода, а превышающая ее часть энергии кванта пойдет на придание фотоэлектрону кинетической энергии

(1.9)

уравнение Эйнштейна для внешнего фотоэффекта. Оно представляет собой закон сохранения и превращения энергии применительно к фотоэффекту и позволяет объяснить все его законы: работа выхода электрона из металла зависит только от природы вещества (находится по справочным данным), поэтому для данного фотокатода скорость фотоэлектронов действительно должна зависеть от частоты света, а не от его интенсивности.

Становится понятным и существование красной границы фотоэффекта – с уменьшением частоты падающего света уменьшается поглощенная электроном энергия, и когда она станет равна работе выхода, фототок прекратится:

, или , (1.10)

то есть красная граница фотоэффекта зависит только от природы вещества.

Наконец, раз каждый из квантов взаимодействует лишь с одним электроном, общее число фотоэлектронов должно быть пропорционально числу падающих квантов, то есть интенсивности света.

Внешний фотоэффект широко применяется в технике для превращения энергии излучения в электрическую энергию – в различных фотоэлементах и фотореле, управляющих электрическими цепями, для воспроизведения звука в кино.

 

Тема 27. Эффект Комптона. Давление света

Давление света. Квантовый характер излучения был экспериментально подтвержден не только фотоэффектом, но и опытами П.Н. Лебедева, который установил, что свет, падающий на какую-либо поверхность, оказывает на нее давление, зависящее от светового потока и отражающей способности поверхности:

, или , (1.11)

где – давление света, с – скорость света, n – число фотонов, падающих на единицу площади освещаемой поверхности в единицу времени, Ее – энергетическая освещенность, R – коэффициент отражения поверхности.

Давление естественного света очень мало для идеально отражающей поверхности (R ~ 1) оно на десять порядков меньше атмосферного давления у поверхности земли.

Опыты Лебедева позволили предположить, что квант электромагнитного излучения обладает не только энергией, но и импульсом, который он может передавать, взаимодействуя с веществом, то есть ведет себя как частица – фотон.

Существование фотонов как частиц света, обладающих импульсом, а, следовательно, и массой, получило новое подтверждение с открытием в 1923 г. эффекта Комптона.

зависит только от угла рассеяния:

, или , (1.12)

где – комптоновская длина волны электрона.

Согласно волновой теории света Комптон-эффект необъясним – ведь волновая теория рассматривает рассеяние излучения на электронах как вынужденные колебания электронов вещества под действием первичной световой волны, а вынужденные колебания происходят с частотой вынуждающей силы, то есть рассеянное излучение должно иметь ту же частоту (а значит и длину волны), что и падающее.

Однако если предположить, что световой квант, попадая на электрон атома рассеивающего вещества, ведет себя так, как частица, обладающая импульсом, совпадающим по направлению с направлением распространения света, закономерности Комптон-эффекта легко объяснимы из схемы, приведенной на рис. 1.5.

 

<== предыдущая лекция | следующая лекция ==>
Волновая оптика | Особенности срочных трудовых договоров
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 945; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.045 сек.