Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование

Править] Альтернативные технологии

Править] Применение

Править] Преимущества и недостатки

Править] Многоцветная (полихромная) электронная бумага

Править] Электронные чернила

Править] История разработки

Электронная бумага была разработана в процессе совершенствования устройств отображения информации. ЖК-дисплеи на момент создания электронной бумаги уже были одними из самых экономичных устройств, имеющих в статическом режиме потребление на уровне единиц микроампер и даже менее, и не требовавших затрат энергии на излучение света, так как являлись устройствами светомодулирующего типа. Но, во-первых, они обладали большими световыми потерями в силу наличия в их конструкции двух поляризаторов и сравнительно малой оптической плотности «включённых» ЖК — из чего следуют достаточно низкие яркость с контрастностью получаемого изображения и достаточно малый угол обзора; во-вторых, они не могли хранить отображаемую информацию: хотя эту задачу можно было перенести на экономичные в статике КМОП элементы с учётом того, что данный тип дисплея сам имеет малое потребление в статическом режиме, но в силу физико-химических особенностей молекул практически используемых ЖК, чтобы избежать разрушения молекул, требуется питание переменным напряжением (динамический режим), что в силу ёмкостной природы ЖК-ячейки приводит к заметному росту потребления электроэнергии, либо же, в случае применения специальных ЖК устойчивых к постоянному току, приводило к сильному усложнению для больших дисплеев схемотехники устройства — экономически неоправданному в силу ограничений имевшейся на тот момент технологии.[1]

Создание технологии «электронной бумаги» было призвано преодолеть эти ограничения. Изображение на ней формируется аналогично письму по обычной бумаге карандашом — твёрдыми пигментными частицами, на (в) микроструктурном материале, дисперсно рассеивающем свет подобно волокнам бумаги. Из-за чего угол обзора получается практически такой же, как и обычной бумаги — много превосходя таковой у плоских жидкокристаллических дисплеев. Электронная бумага также является устройством светомодулирующего типа с присущими ему положительными свойствами и работает в чистом виде в отражённом свете без промежуточных преобразований светового потока[2] — как обычный лист с печатным текстом или изображением, вследствие чего достигается высокая яркость и контрастность получаемого изображения. Эффект памяти обеспечивается удержанием пигментных частиц на поверхности твёрдого тела (подложки) силами Ван-дер-Ваальса.[3]

Технически точный термин — электрофоретический индикатор, так как практически все модификации данной технологии используют явление электрофореза.[3]

Принцип действия «электронных чернил»

Электронная бумага была впервые разработана в Исследовательском Центре компании Xerox в Пало Альто (англ. Xerox’s Palo Alto Research Center) Ником Шеридоном (англ. Nick Sheridon) в 1970-х годах. Первая электронная бумага, названная Гирикон (англ. Gyricon), состояла из полиэтиленовых сфер от 20 до 100 мкм в диаметре. Каждая сфера состояла из отрицательно заряженной чёрной и положительно заряженной белой половины[4]. Все сферы помещались в прозрачный силиконовый лист, который заполнялся маслом, чтобы сферы свободно вращались. Полярность подаваемого напряжения на каждую пару электродов определяла, какой стороной повернется сфера, давая, таким образом, белый или чёрный цвет точки на дисплее[5].

В 90-х годах ХХ века Джозеф Якобсон (Joseph Jacobson) изобрел другой тип электронной бумаги. Впоследствии он основал корпорацию E Ink Corporation, которая, совместно с Philips, через два года разработала и вывела эту технологию на рынок.

Принцип действия был следующий: в микрокапсулы, заполненные окрашенным маслом, помещались электрически заряженные белые частички. В ранних версиях низлежащая проводка контролировала, будут ли белые частички вверху капсулы (чтобы она была белой для того, кто смотрит) или внизу (смотрящий увидит цвет масла).[6] Это было фактически повторное использование уже хорошо знакомой электрофоретической (от электро- и греч. φορέω — переносить) технологии отображения, но использование капсул позволило сделать дисплей с использованием гибких пластиковых листов вместо стекла.

Принцип действия многоцветной электронной бумаги использующей светофильтры

Обычно цветная электронная бумага состоит из тонких окрашенных оптических фильтров[7], которые добавляются к монохромному дисплею, описанному выше. Множество точек разбиты на триады, как правило, состоящие из трёх стандартных цветов CMY: циановый, пурпурный и жёлтый. В отличие от дисплеев с подсветкой, где применяется RGB и сложение цвета, в e-ink цвета формируются методом вычитания, как и в полиграфии.

В настоящее время дисплеи на основе электронной бумаги имеют очень большое время обновления по сравнению с ЖК-дисплеями. Это не позволяет производителям использовать сложные интерактивные элементы интерфейса (анимированные меню и указатели мыши, скроллинг), которые широко распространены на КПК. Сильнее всего это сказывается на способности электронной бумаги показывать увеличенный фрагмент большого текста или изображения на маленьком экране.

Преимуществом же можно назвать бо́льшее время автономной работы, которое отличается в лучшую сторону по сравнению с прочими электронными устройствами с дисплеями.

Электронная бумага легка, надёжна, а дисплеи на её основе могут быть гибкими (хотя и не настолько, как обычная бумага). Предполагаемое применение включает электронные книги, которые могут хранить цифровые версии многих литературных произведений, электронные вывески, наружную и внутреннюю рекламу.

Технологические компании изобретают новые типы электронной бумаги и ищут пути внедрения данной технологии. Например, модификация жидкокристаллических дисплеев, электрохромные дисплеи (смарт-стекло), а также электронный эквивалент детской игрушки «Волшебный экран», на котором изображение появляется за счет прилипания пленки к подложке, разработанный японским университетом Кюсю. В той или иной форме, электронная бумага разрабатывалась компанией Gyricon (выделившаяся из Xerox), Philips, Kent Displays (холестерические дисплеи (англ. cholesteric)), Nemoptic (бистабильный нематический (англ. bistable nematic) — BiNem — технология), NTERA (электрохромные NanoChromics дисплеи), E Ink and SiPix Imaging (электрофоретические) и многие другие. Компания Fujitsu демонстрировала разработанную ими электронную бумагу на выставке в Токийском Международном Форуме.

Корпорация E Ink Corporation, совместно с Philips и Sony, внесла наибольший вклад во внедрение и популяризацию электронной бумаги. В октябре 2005 года она объявила, что будет поставлять комплекты для разработчиков, состоящие из 6-дюймовых дисплеев с разрешением 800×600 начиная с 1 ноября 2005 года.

  • Технология Mirasol, разрабатываемая компанией Qualcomm. Эти дисплеи сочетают в себе преимущества стандартных жидкокристаллических экранов и технологии «электронных чернил» (E-Ink). Благодаря специальной технологии, в основе которой лежат микроэлектромеханические элементы, Mirasol дисплеи имеют очень низкое энергопотребление и в то же время способны отображать полноцветные изображения. Более того, уже были продемонстрированы образцы Mirasol дисплеев Qualcomm, способных отображать цветное видео с частотой в 30 кадров в секунду.
    Уже сейчас существуют действующие образцы таких дисплеев с диагональю 5,7 дюйма и разрешением 1024 x 768 пикселей, которые могут использоваться в связке с емкостными сенсорными экранами. Компания Qualcomm на конгрессе Mobile World Congress 2010 в Барселоне подтвердила, что первые электронные книги с цветными дисплеями, выполненными на основе фирменной технологии Mirasol, должны появиться на рынке уже осенью 2010 года.
  • FOLED — технология изготовления гибких цветных дисплеев на основе органических светодиодов OLED

 


Компьютерная сеть (вычислительная сеть, сеть передачи данных) — система связи компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные физические явления, как правило — различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

Сетевое оборудование — устройства, необходимые для работы компьютерной сети, например: маршрутизатор, коммутатор, концентратор, патч-панель и др. Можно выделить активное и пассивное сетевое оборудование.

<== предыдущая лекция | следующая лекция ==>
Электронная бумага | Сетевой коммутатор
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 277; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.