Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 11. Разное

Клеточный и молекулярный уровень в биотехнологии. What is molecular biotechnology? In its broadest sense, molecular biotechnology is the use of laboratory techniques to study and modifynucleic acids and protein s for applications in areas such as human and animal health, agriculture, and the environment.

Биотехнология на клеточном уровне (клеточная технология s. l.) включает:

- культивирование клеток для получения целевых продуктов

- иммобилизацию клеток для применения в биореакторах

- клеточную инженерию.

 

Ретроингибирование [end product (feedback) inhibition] - ингибирование конечным продуктом, ингибирование по типу обратной связи. Ингибирующее действие конечного продукта цепи биохимических реакций на активность, как правило, самого первого из ферментов (регуляторного), катализирующих данную последовательность реакций, либо фермента, находящегося в точке “разветвления” мультиферментной системы; Р. является механизмом саморегуляции ферментативной активности, причем во многих саморегулируемых по типу Р. системах регуляторный фермент поливалентен, т.е. подчиняется действию более чем одного специфического модулятора.

 

Биогеотехнология (биотехнология в горнодобывающей промышленности)

Некоторые микроорганизмы могут катализировать определенные окислительно-восстановительные реакции - окисление Fe и Mn в воде, окисление серосодержащих соединений, окисление-восстановление азотсодержащих соединений. Аэробные бактерии могут выделять железо, медь, сульфаты.

Биогеотехнология - использование геохимической деятельности микроорганизмов в горнодобывающей промышленности. Это экстракция и концентрирование металлов при биологической очистке сточных вод предприятий горнодобывающей промышленности и флотационных процессах: выщелачивание бедных и отработанных руд, десульфирование каменного угля, окисление пиритов и пиритсодержащих пород.

Биогеотехнология стихийно зародилась еще в XVI в. До нас дошли сведения о том, что в те далекие времена в Венгрии для получения меди груды добытой руды орошали водой. Этот нехитрый технологический прием оказался прообразом современного бактериально-химического метода кучного выщелачивания металлов из руд. Конечно, тогда еще не знали, что используемый процесс получения меди по своей природе является микробиологическим. Это стало известно только в 1922 г. благодаря работам немецких ученых Рудольфа и Хельброннера. По-видимому, 1922 г. следует считать официальной датой рождения биогеотехнологии. В дальнейшем биогеотехнология развивалась неровно и своего совершеннолетия достигла к началу 80-х годов нашего века. К этому времени наряду с бактериальным выщелачиванием металлов сформировались и другие разделы биогеотехнологии — удаление серы из углей, борьба с метаном в угольных шахтах, повышение нефтеотдачи пластов.

Биогеотехнология выщелачивания металлов — использование главным образом тионовых (окисляющих серу и серосодержащие соединения) бактерий для извлечения металлов из руд, рудных концентратов и горных пород. При переработке бедных и сложных руд тысячи и даже миллионы тонн ценных металлов теряются в виде отходов, шлаков, «хвостов». Происходят также выбросы вредных газов в атмосферу. Бактериально-химическое выщелачивание металлов уменьшает эти потери. Основу этого процесса составляет окисление содержащихся в рудах сульфидных минералов тионовыми бактериями. Окисляются сульфиды меди, железа, цинка, олова, кадмия и т. д. При этом металлы из нерастворимой сульфидной формы переходят в сульфаты, хорошо растворимые в воде. Из сульфатных растворов металлы извлекаются путем осаждения, экстракции, сорбции. Одним из возможных путей извлечения металлов из растворов является адсорбция металлов клетками живых микроорганизмов, так называемая биосорбция металлов. Металлы включаются в состав специфических белков – металлотионеинов.Полезными для биогеотехнологии добычи металлов свойствами обладает целый ряд микроорганизмов. Но основным из них, безусловно, является открытый в 1947 г. Колмером и Кинкелем вид тионовых бактерий, названный Thiobacillus ferrooxidans. Необходимую для роста энергию эти бактерии получают при окислении восстановленных соединений серы и двухвалентного железа в присутствии свободного кислорода. Они окисляют практически все известные в настоящее время сульфиды металлов. Источником углерода для роста бактерий служит при этом углекислый газ. Характерной особенностью их физиологии является потребность в очень кислой среде. Они развиваются при рН от 1 до 4,8 с оптимумом при 2—3. Интервал температур, в котором могут развиваться бактерии этого вида, составляет от 3 до 40°С с оптимумом при 28°С.Тионовые бактерии широко распространены в природе. Они обитают в водоемах, почвах, угольных и золоторудных месторождениях. В значительных количествах встречаются они в месторождениях серных и сульфидных руд. Но в условиях естественного залегания таких руд активность тионовых бактерий сдерживается отсутствием кислорода. При разработке сульфидных месторождений руды вступают в контакт с воздухом, и в них развиваются микробиологические процессы, приводящие к выщелачиванию металлов. Применяя определенные биотехнологические мероприятия, этот естественный процесс можно ускорить.

Основной технологической операцией этого способа является орошение отвалов добытой руды растворами, содержащими серную кислоту, ионы двух- и трехвалентного железа, а также жизнеспособные клетки тионовых бактерий. Иногда для усиления процессов выщелачивания внутрь отвала подают воздух. В таких условиях выщелачивающий раствор фильтруется через толщу руды и в результате микробиологических и химических процессов обогащается извлекаемыми из руды металлами. Затем этот раствор собирают с помощью системы коллекторов, и из него извлекают металлы одним из физико-химических методов.Ежегодно в мире таким способом добывают сотни тысяч тонн меди, или примерно 5 % от ее общей добычи. В ряде стран этим способом получают также значительные количества урана.

Биогеотехнология обессеривания углей — использование тионовых бактерий для удаления серосодержащих соединений из углей. Как бурые, так и каменные угли нередко содержат значительные количества серы. Общее содержание серы в углях может достигать 10—12 %. При сжигании углей содержащаяся в них сера превращается в сернистый газ, который поступает в атмосферу, где из него образуется серная кислота. Из атмосферы серная кислота выпадает на поверхность земли в виде сернокислотных дождей.

По имеющимся данным, в некоторых странах Западной Европы в год на 1 га земли с дождями выпадает до 300 кг серной кислоты.Нетрудно себе представить, какой ущерб наносят кислотные дожди здоровью человека, его хозяйственной деятельности и окружающей природе. Кроме этого, высокосернистые угли плохо коксуются и поэтому не могут быть использованы в цветной металлургии. Микробное удаление серы из углей, по мнению специалистов, является экономически выгодным, и с ним связывают надежды на решение проблемы сернокислотных дождей.

Первые опыты по направленному удалению серы из угля с использованием микроорганизмов были выполнены в 1959 г. в нашей стране 3. М. Зарубиной, Н. Н. Ляликовой и Е. И. Шмук. В результате этих опытов за 30 суток с участием бактерий Th. ferrooxidans из угля было удалено 23—30 % серы. Позднее несколько работ по микробиологическому обессериванию угля было опубликовано американскими исследователями. Им удалось с помощью тионовых бактерий снизить содержание пиритной серы в каменном угле за четверо суток почти на 50 %.

Этот метод будет сопровождаться попутным выщелачиванием различных металлов. Известно, что в заметных количествах содержится в углях германий, никель, бериллий, ванадий, золото, медь, кадмий, свинец, цинк, марганец. Попутное получение ценных металлов при десульфуризации угля должно дать дополнительный экономический эффект.

Работы по удалению пиритной серы из угля микробиологическим путем проводятся сейчас во многих странах мира. По последним сообщениям в лабораторных условиях удается снизить содержание серы в угле путем микробиологического выщелачивания за 5 суток почти на 100 %. Микробиологический способ десульфуризации углей рассматривается как весьма перспективный.

Биогеотехнология и борьба с метаном в угольных шахтах — использование метанокисляющих бактерий для снижения концентрации метана в угольных пластах и выработанных пространствах.

В пластах каменного угля содержится огромное количество метана, достигающее сотни кубометров в 1 т угля. При этом чем глубже залегает уголь в недрах земли, тем больше метана он содержит. При подземной добыче угля метан из разрабатываемых угольных пластов и образующихся при этом выработанных пространств поступает в атмосферу шахт. Скопления этого взрывоопасного газа в горных выработках создают постоянную угрозу для жизни шахтеров. Известны случаи крупных взрывов метана в угольных шахтах мира, унесшие сотни человеческих жизней.

Традиционные средства борьбы с метаном в угольных шахтах (вентиляция, вакуумная дегазация, увлажнение пластов водой) в условиях постоянной интенсификации горных работ и перехода на все более глубокие угленосные горизонты часто уже не могут обеспечить одновременно высокий уровень угледобычи и безопасные условия труда. В основе биогеотехнологических способов борьбы с метаном лежит процесс поглощения этого газа метанокисляющими бактериями в угольных пластах и выработанных пространствах. На данном уровне развития наук этот процесс представляет собой единственную возможность разрушения молекулы метана при температурах разрабатываемых угленосных толщ.

Идея об использовании метанокисляющих бактерий для борьбы с метаном в угольных шахтах принадлежит советским ученым. В 1939 г. А. 3. Юровский, Г. П. Капилаш и Б. В. Мангуби предложили применять эти бактерии для снижения выделения метана из выработанных пространств. Несмотря на широкое распространение метанокисляющих бактерий в природе, в угольных пластах и прилегающих породах они отсутствуют. Поэтому необходимое количество активных метанокисляющих бактерий выращивают в ферментерах и в виде суспензии в питательной среде подают в поровый объем угольных пластов и выработанные пространства.Рабочая суспензия приготовляется непосредственно в шахте. В рудничную воду добавляют заданное количество биомассы метанокисляющих бактерий и недостающие для их активной жизнедеятельности минеральные соли. Обычно это минеральные соединения азота и фосфора.В угольный пласт рабочая суспензия нагнетается насосами через скважины, пробуренные по углю или из подземных выработок, или с поверхности земли: 1 т угля может принять 20—40 л рабочей суспензии. В угле микроорганизмы распределяются по трещинам и порам.

Таким путем осуществляется насыщение угля метаноокисляющими бактериями. Но для развития этих бактерий необходим свободный кислород, которого нет в угольных пластах. Поэтому в насыщенный метанокисляющими бактериями участок угольного пласта через те же скважины компрессором постоянно прокачивается воздух. В таких условиях бактерии потребляют содержащийся в угле метан, и за счет этого происходит уменьшение исходной газоносности угольного пласта. Микробиологические способы борьбы с метаном были неоднократно испытаны в угольных шахтах. Поступление метана как из угольных пластов, так и из выработанных пространств в ходе этих испытаний было снижено в среднем в 2 раза. При прочих равных условиях это позволяет повышать добычу угля примерно в 1,5 раза.

Биогеотехнология и повышение нефтеотдачи пластов — использование различных групп микроорганизмов для увеличения вторичной добычи нефти.

Нефть, как известно, является в настоящее время основным энергетическим и химическим сырьем. Однако по некоторым прогнозам мировые запасы нефти могут быть исчерпаны уже в течение ближайших 50 лет. Вместе с тем существующая технология позволяет извлекать только половину нефти, содержащейся в месторождениях. Это обусловлено прочной связью нефти с вмещающими ее породами. Повышение нефтеотдачи пластов на 10— 15 % было бы равносильно открытию новых месторождений. В связи с этим в настоящее время заметно возрос интерес к поиску путей и средств повышения вторичной добычи нефти.

Один из способов предполагает использование комплекса углеводородокисляющих и метанобразующих бактерий для увеличения нефтеотдачи пластов основано на активации геохимической деятельности этих микробов в нефтяной залежи, куда они попадают вместе с закачиваемыми через скважины поверхностными водами. Активация названных микробиологических процессов достигается путем аэрации закачиваемых вод и добавления в них минеральных солей азота и фосфора. Недостаток этих химических элементов чаще всего лимитирует активность микрофлоры в природных условиях. Нагнетание в нефтяную залежь обогащенной кислородом и минеральными солями воды приводит к образованию аэробной зоны в нефтеносном пласте вокруг нагнетательной скважины. Здесь начинают интенсивно идти процессы разрушения нефти аэробными углеводородокисляющими микробами. Это сопровождается накоплением углекислого газа, водорода и низкомолекулярных органических кислот, которые поступают в анаэробную зону нефтяной залежи. Здесь они превращаются метанобразующими бактериями в метан. Разрушение нефти и образование газов приводят к разжижению нефти и повышению газового давления в нефтеносном пласте, что и должно сопровождаться увеличением добычи нефти из добывающих скважин.

 

Биотехнологии, используемые для охраны окружающей среды:

1. Утилизация и переработка органических промышленных, бытовых и сельскохозяйственных отходов.

2. Биологическая рекультивация, включая биотехническую очистку почв от нефти и нефтепродуктов.

3. Биологическая очистка сточных вод.

4. Биологическая очистки выбросов в атмосферу.

 

1 – включает Вермикультуру - использование дождевых червей для переработки органических отходов - является одним из перспективных направлений биотехнологии. В настоящее время преобладающей тенденцией является культивирование красного калифорнийского червя - выведенной селекционным путем линии навозного червя, которая отличается значительной плодовитостью, утратой инстинкта покидания своего местообитания при неблагоприятных условиях среды, высокой степенью адаптации к переработке специфических видов отходов. Таковыми могут служить различные субстанции органического происхождения, например навоз и помет сельскохозяйственных животных, отходы мясокомбинатов, рыбоперерабатывающей, целлюлозной промышленности, овощей и фруктов, бумага, картон, опилки, осадки городских и производственных очистных станций.

2 - При биорекультивации используются микроорганизмы, разрушающие нефть и нефтепродукты, а также биокомпосты и нефтесорбенты. В качестве доступного сорбента могут быть использованы отходы рисозаводов. Рисовая шелуха - легко доступный и перспективный сорбент. В связи с этим представляют интерес разнообразные растительные отходы сельского хозяйства, пищевой и деревообрабатывающей промышленности (лом древесноволокнистых плит, опилки, шелуха овса, гречки, куриные перья.

4 – например.: применение установки для биологической очистки и дезодорирования промышленных газовоздушных выбросов, содержащих органические компоненты различной природы. Технология очистки газовоздушных выбросов основана на разложении микроорганизмами вредных органических веществ, содержащихся в газовоздушной смеси и являющихся источником энергии для биомассы. Органические соединения разлагаются на углекислый газ и воду. Подбор консорциумов микроорганизмов осуществляется в зависимости от состава очищаемых смесей.

 

<== предыдущая лекция | следующая лекция ==>
Подтема 4. Клеточные технологии репродукции | Immobilized cell reactors
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 375; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.