Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Совместимость

Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей - использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.


Стеки протоколов и типы сетей в автоматизированных системах

Протокол TCP

Протоколы, используемые совместно в сетях определенного типа, объединяют в совокупности, называемые стеками протоколов. Широко известны стеки протоколов TCP/IP, 8РХЛРХ, Х.25, Frame Relay (FR), ATM, семиуровневые протоколы ЭМВОС.

Наибольшее распространение получили протоколы TCP/IP в связи с их использованием в качестве основных в сети Internet. TCP/IP - пятиуровневые протоколы, но базовыми среди них, давшими название всей совокупности, являются протокол транспортного уровня TCP (Transmission Control Protocol) и протокол сетевого уровня IP (Internet Protocol). Эти протоколы поддерживаются такими ОС, как Unix и Windows-95/NT.

TCP -дуплексный транспортный протокол с установлением соединения. Под установлением соединения подразумевают установление виртуального канала в сети путем обмена запросом и согласием на соединение между отправителем и получателем сообщения. К другим функциям TCP относятся упаковка и распаковка пакетов на концах транспортного соединения; управление потоком - получатель одновременно с подтверждением правильности передачи сообщает размер окна, т. е. число пакетов, которые получатель готов принять, или, что практически то же самое, число пакетов, которые отправитель может послать в сеть, не дожидаясь получения подтверждения об их правильном приеме; помещение срочных данных между специальными указателями, т. е. возможность управлять скоростью передачи.

В программном обеспечении протокола TCP имеется программа-агент, которая постоянно готова к работе и при приходе запроса и установлении соединения генерирует свою копию для обслуживания создаваемого соединения, а сама программа-родитель ждет новых вызовов.

В схеме установления соединения в сетях клиент - сервер предусмотрена посылка клиентом запроса на соединение (команда ACTIVE_OPEN) с указанием адреса сервера, тайм-аута (времени жизни), уровня секретности. Можно сразу же поместить в запрос данные (тогда используется команда ACTIVE_OPEN_WITH_DATA). Если сервер готов к связи, он отвечает командой согласия (OPEN_RECEIVED), в которой назначает номер соединения. Далее командой SEND посылаются данные, а командой DELIVER подтверждается их получение. Разъединение выполняется обменом командами CLOSE и CLOSING.

В одноранговых сетях используется трехшаговая процедура установления соединения. Сначала инициатор А посылает запрос на установление прямого соединения, затем приемник В отвечает согласием и посылает запрос на установление обратного соединения, узел А отвечает на это согласием.

Структура TCP-пакета (в скобках указано число битов) в предположении, что пакет посылается от узла А к узлу В:

  • порт отправителя Л (16);
  • порт получателя В (16);
  • код позиции в сообщении, т. е. порядковый номер первого байта в поле данных пакета, посылаемого от А к Б (32);
  • подтверждение в виде номера следующего байта, ожидаемого от узла B(32);
  • управление (16), включающее данные о размере заголовка и ряд одно битовых признаков, например запроса на соединение, конца передаваемых данных, срочности передачи данных и т.п.;
  • размер окна (16), предлагаемый у злом А, т.е. число байтов, которое может послать узел В до получения подтверждения от узла Л;
  • контрольный код (16);
  • дополнительные признаки (16);
  • опции (24);
  • заполнитель (8);
  • данные.

Протокол TCP является байтовым в том смысле, что каждый байт сообщения получает свой порядковый номер. Отсюда вытекает одно из ограничений на максимально допустимую в протоколе TCP/IP пропускную способность. Это ограничение составляет 232 байт / время жизни дейтаграммы, так как для конкретного соединения в сети не должно одновременно существовать более одного байта с одним и тем же номером.

Еще более жесткое ограничение возникает вследствие представления размера окна 16 битами. Это ограничение заключается в том, что за время Tv прохождения пакета от отправителя к получателю и обратно в сеть может быть направлено не более 216 информационных единиц конкретного сообщения. Поскольку обычно такой единицей является байт, то имеем (216 • 8 бит) / Tν. Так, для каналов со спутниками на геостационарных орбитах Tν, составляет около 0,5 с и ограничение скорости будет около 1 Мбит/с. Можно заметно увеличить этот предел, если в качестве информационной единицы использовать С байт (C>1)

В протоколе TCP повторная передача пакета происходит, если в течение оговоренного интервала времени Тm (тайм-аута) от получателя не пришло положительное подтверждение правильного приема. Обычно Тm = 2 t, где t - некоторая оценка времени Tν прохождения пакета в обе стороны. Это время периодически корректируется по результату измерения Tν, а именно

t:= 0,9 t + 0,1 T ν

Попытки повторных передач пакета не могут продолжаться бесконечно, и при превышении интервала времени, устанавливаемого в пределах 0,5... 2,0 мин, соединение разрывается.

Поля "Размер окна" имеются в пакетах как прямого, так и обратного соединений, их значения устанавливают узлы, отсылающие пакеты, с учетом размеров буфера, имеющейся информации о перегрузке сети и т.п. Обычно для управления окном используют меньшее из двух значений размера окна. При этом узел А может отправлять пакеты с номерами байтов не более у = k + т, если k - размер окна, а в поле "Подтверждение" последнего пришедшего от получателя В пакета указан номер т следующего ожидаемого байта.

Размер окна регулируют следующим образом. Если сразу же после установления соединения выбрать завышенный размер окна, что означает разрешение посылки пакетов с высокой интенсивностью, то велика вероятность появления перегрузки определенных участков сети. Поэтому используют алгоритм так называемого медленного старта. Сначала посылается один пакет и при подтверждении его приема окно увеличивается на размер одного пакета (обычно это 512 байт), т.е. теперь можно посылать два пакета. Если вновь приходит положительное подтверждение (потерь пакетов нет), то посылается уже четыре пакета и т. д. Скорость растет, пока пакеты проходят успешно. При потере пакета или при приходе от протокола управления сигнала о перегрузке сети размер окна уменьшается и далее возобновляется процедура линейного роста размера окна. Медленный старт снижает информационную скорость, особенно при пересылке коротких сообщений, поэтому стараются применять те или иные приемы его улучшения.

 

Протокол IP

Сетевой протокол IP - дейтаграммный сетевой протокол, т. е. протокол без установления соединения. В дейтаграммных протоколах сообщение разбивается на дейтаграммы. Дейтаграмма - это пакет, передаваемый независимо от других частей одного и того же сообщения в вычислительных сетях с коммутацией пакетов. Дейтаграммы одного и того же сообщения могут передаваться в сети по разным маршрутам и поступать к адресату в произвольной последовательности, что требует дополнительных операций по сборке сообщения из дейтаграмм в узле-получателе. На внутренних участках маршрута контроль правильности передачи не предусмотрен и надежность связи обеспечивается лишь контролем в оконечном узле.

К функциям протокола IP относятся фрагментация и сборка пакетов при прохождении через промежуточные сети, имеющие другие протоколы; маршрутизация, т. е. определение пути прохождения пакета по разветвленной сети; проверка контрольного кода заголовка пакета (правильность передачи всего пакета проверяется на транспортном уровне, т. е. с помощью TCP, в оконечном узле); управление потоком - сброс дейтаграмм при превышении заданного времени жизни.

Структура дейтаграммы в IP (в скобках указано число битов):

  • версия протокола IP (4) (практически используются версии IPv4 и IPv6);
  • длина заголовка (4), т. е. число 32-битных слов в заголовке;
  • тип сервиса (8);
  • общая длина (16) информационной части пакета в байтах;
  • идентификация (16) - порядковый номер дейтаграммы; если вследствие особенностей промежуточных сетей при маршрутизации требуется разделение дейтаграммы на несколько частей, то номер дейтаграммы идентифицирует принадлежность фрагмента к определенной дейтаграмме;
  • место фрагмента в дейтаграмме (16), т. е. номер фрагмента, который используется при восстановлении дейтаграммы из фрагментов;
  • время жизни дейтаграммы в сети (8);
  • тип протокола (8), который используется на транспортном уровне для обработки инкапсулированного сегмента (TCP, UDP и т. п.);
  • контрольный код CRC заголовка (16);
  • адрес источника (32);
  • адрес назначения (32);
  • опции (32);
  • данные (не более 65 356 байт).

Приведенная структура заголовка соответствует версии протокола IP, называемой четвертой версией IPv4. Один из недостатков этой версии - 32-битный размер адреса. Действительно, 32 бита соответствуют 232 ≈ 4,3 млрд адресов, а это в связи с бурным ростом числа компьютеров в Internet уже вызывает затруднения с распределением адресного пространства. Поэтому разработана и постепенно вводится в действие версия IPv6, в которой применена другая структура заголовка и адресации. Как частный случай, в структуре IPv6-aдреса можно разместить ПЧ4-адрес, т.е. сети с протоколами этих версий могут работать совместно. Пока (к 2002 г.) большинство доменов Internet работает по протоколу IPv4.

Всего в IPv4-cera одновременно может быть 216 ≈ 65 тыс. дейтаграмм сообщения с разными идентификаторами, т. е. за отрезок времени, равный времени жизни дейтаграммы, может быть передано не более 216 дейтаграмм. Это один из факторов, ограничивающих пропускную способность сетей с протоколом IP. Действительно, при времени жизни 120 с имеем предельную скорость 216/120 = 546 дейтаграмм в секунду, что при размере дейтаграммы до 65 тыс. байт дает ограничение скорости приблизительно в 300 Мбит/с (такое же значение одного из ограничений предельной скорости получено выше и для протокола TCP).

Время жизни может измеряться как в единицах времени Т, так и в хопах Р (число пройденных маршрутизаторов). В первом случае контроль ведется по записанному в заголовке значению Т, которое уменьшается на единицу каждую секунду. Во втором случае каждый маршрутизатор уменьшает число Р, записанное в поле "Время жизни", на единицу. При Т = 0 или при Р = О дейтаграмма сбрасывается.

Поле "Опции" рассматривается как необязательное.

 

Адресация в ТСР/IР

В протоколах ТСР/IР различают два типа адресов. На канальном уровне используют адреса, называемые физическими. Это шестибайтовые адреса сетевых плат, присваиваемые изготовителем контроллеров (как уже отмечалось, каждый изготовитель вместе с лицензией на изготовление получает уникальный диапазон адресов). На сетевом уровне используют сетевые адреса, иначе называемые виртуальными или логическими.

Различают понятия сетевых адреса и имени, имеющих цифровое и буквенное выражения соответственно.

Сетевой адрес называют IP-адресом. В IPv4 это четырехбайтовый код, состоящий из двух частей: адреса сети и адреса узла (заметим, что узел, имеющий IP-адрес, называют хостом). Имя характеризует пользователя. Его составляют в соответствии с доменной системой имен. Соответствие между IP-адресом и IP-именем хоста устанавливается специальной службой имен. В Internet это DNS (Domain Name Service), в семиуровневой модели ISO - стандарт X. 500.

IP-имя, называемое также доменным именем, - удобное для человека название узла или сети. Имя отражает иерархическое построение глобальных сетей и потому состоит из нескольких частей (аналогично обычным почтовым адресам). Корень иерархии обозначает либо страну, либо отрасль знаний, например: ru-Россия, us-США, de-Германия, uk-Великобритания, edu-наука и образование, com - коммерческие организации, org - некоммерческие организации, gov - правительственные организации, mil-военные ведомства, net - служба поддержки Internet и т. д. Корень занимает в IP-имени правую позицию, левее записываются локальные части адреса и, наконец, перед символом @ указывается имя почтового ящика пользователя. Так, запись [email protected] расшифровывается следующим образом: пользователь norenkov имеет почтовый ящик в сервере wwwcdl организации bmstu в стране ru.

IPv4-anpec - слово, записываемое в виде четырех частей (побайтно), разделенных точками. Каждые подсеть и узел в подсети получают свои номера, причем для сети можно использовать от одного до трех старших байтов, а оставшиеся байты - для номера узла. Какая часть IP-адреса относится к сети, определяется ее маской, выделяющей соответствующие биты в IP-адресе. Например, для некоторой сети маска может быть 255.0.0.0, а для ее подсети - 255.255.0.0 и т. д. Тем самым описывается иерархия сетей.

Адреса при включении новых хостов в сеть выдает одна из уполномоченных организаций-провайдеров, предоставляющих телекоммуникационные услуги. Провайдер, в частности, обеспечивает включение IP-адреса и соответствующего ему IP-имени в сервер службы адресов DNS. Это означает запись данных о хосте в DIB (Directory Information Base) локального узла DNS.

При обращении к сети пользователь, отправляющий сообщение, задает IP-имя получателя. Поскольку маршрутизация в сети осуществляется по IP-адресам, то с помощью серверов DNS осуществляется перевод указанного IP-имени в IP-адрес.

В локальной сети, где используются шестибайтовые адреса, называемые МАС-адресами, требуется преобразование IP-имен в МАС-адреса. Это преобразование выполняется с помощью специального протокола ARP, имеющегося в стеке TCP/IP. Для этого создаются ARP-таблицы соответствия IP и MAC адресов данной сети.

Маршрутизация в Internet организована по иерархическому принципу. Имеются уровни ЛВС и корпоративных сетей; маршрутных доменов, в каждом из которых используются единые протоколы и алгоритмы маршрутизации; административных доменов, каждый из которых соответствует некоторой ассоциации и имеет единое управляющее начало. В маршрутных доменах есть внешние маршрутизаторы для связи с другими маршрутными или административными доменами.

Обращение из некоторого узла к другому узлу в Internet (например, из wwwcdl.bmstu.ru по адресу http:// www.eevl.ac.uk) происходит следующим образом.

Сначала IP-имя переводится в IP-адрес. Для этого происходит обращение к местному серверу (bmstu), и если там сведений о сети назначения нет, то происходит переход к серверу следующего, более высокого уровня (ш) и далее по иерархии вниз до получения IP-адреса хоста назначения. В местном DNS-cepвере могут быть сведения об IP-адресах хостов из удаленных доменов, если к ним происходят достаточно частые обращения из данного домена.

После получения IP-адреса узел-отправитель сравнивает номер своей сети (подсети) с номером сети, указанным в IP-адресе получателя в заголовке пакета. Если номера совпадают, то узел-отправитель с помощью имеющейся в его памяти ARP-таблицы переводит IP-адрес в МАС-адрес, по которому и доставляется пакет средствами канального уровня. Если в ARP-таблице строки с нужным МАС-адресом не оказалось, то по сети широковещательно, т. е. по всем узлам данной сети, распространяется ARP-запрос. Все узлы вскрывают этот запрос, но только узел, имеющий указанный в запросе IP-адрес, откликается своим МАС-адресом. Далее пакет отправляется адресату, одновременно строка с найденным МАС-адресом заносится в ARP-таблицу узла-отправителя. Если номера сетей не совпадают, то пакет пересылается маршрутизатору, который с помощью своей таблицы определяет, через какой из своих портов направлять пакет дальше.

Как отмечено выше, продолжающийся рост числа узлов в Internet привел к появлению версии IPv6 протокола IP.

В протоколе IPv6 размер адреса увеличен до 128 бит. Адреса отражают иерархическую структуру сети и могут быть индивидуальными или групповыми. Индивидуальный адрес имеет следующую структуру (в скобках указан размер соответствующего поля в битах):

  • FP=001 -префикс, указавающийтип адреса, в данном случае адрес индивидуальный (3, в общем случае до 8);
  • TLA - идентификатор верхнего уровня в иерархической структуре (8... 13), обычно это идентификатор провайдера;
  • RES - зарезервированное поле (8);
  • NLA - идентификатор среднего уровня (32), обычно это идентификатор корпоративной сети (абонента);
  • SLA - идентификатор нижнего уровня (16), т. е. подсети в корпоративной сети;
  • ID - идентификатор узла (48), представленный в виде шестибайтового МАС-адреса.

Групповые адреса присваиваются группам узлов. Сообщение, адресованное группе, будет доставлено каждому члену группы.

Совместное использование протоколов IPv4 и IPv6 возможно в течение переходного периода. В частности, адреса IPv4 помещаются в заголовке IPv6 на место последних 32 бит, а предыдущие 96 бит заполняются нулями.

В целом IP-заголовок в протоколе IPv6 состоит из 40 байт и включает следующие поля:

версия протокола (4) - приоритет (4) - параметры обслуживания (24) - длина пакета (16) - тип протокола (8) - тип следующего заголовка (8) - лимит числа переходов (8) - адреса отправителя и получателя (по 128).

За основным заголовком в IPv6-naKere могут следовать дополнительные, используемые для указания пользователю той или иной служебной информации, например способа шифрования или способа фрагментации. Лимит числа переходов - это максимально допустимое число маршрутизаторов на пути дейтаграммы. Превышение этого числа приводит к ликвидации пакета.

Другие протоколы стека TCP/IP

В стек протоколов TCP/IP входит ряд других протоколов. Например, на транспортном уровне это протокол UDP (User Datagram Protocol) - транспортный протокол без установления соединения, он значительно проще TCP, но его используют чаще всего для сообщений, умещающихся в один пакет. После оформления UDP-пакета он передается с помощью средств IP к адресату, который по заголовку IP-пакета определяет тип протокола и передает пакет не агенту TCP, а агенту UDP. Агент определяет номер порта и ставит пакет в очередь к этому порту. В UDP служебная часть дейтаграммы короче, чем в TCP (8 байт вместо 20 байт), не требуется предварительного установления соединения или подтверждения правильности передачи, как это делается в TCP, что и обеспечивает большую скорость за счет снижения надежности доставки. Структура UDP-дейтаграммы (в скобках указано число битов):

  • порты отправителя и получателя (по 16);
  • длина (16);
  • контрольная сумма (16);
  • данные (не более 65,5 тыс. байт).

Протоколы более высоких уровней, чем TCP, в сетях TCP/IP называют прикладными протоколами. В частности, к ним относят следующие протоколы:

SMTP (Simple Mail Transport Protocol) - почтовый протокол, который по классификации ЭМВОС наиболее близок к прикладному уровню;

FTP (File Transfer Protocol) - протокол с функциями представительного по ЭМВОС уровня;

Telnet - протокол с функциями сеансового по ЭМВОС уровня.

На нижних уровнях в TCP/IP используются протоколы IEЕЕ 802/Х или Х.25.

Для управления сетью в стек TCP/IP включены специальные протоколы управления.

Среди протоколов управления различают протоколы, реализующие управляющие функции сетевого уровня, и протоколы мониторинга за состоянием сети, относящиеся к более высоким уровням. В сетях TCP/IP роль первых из них выполняет протокол ICMP (Internet Control Message Protocol), роль вторых - протокол SNMP (Simple Network Management Protocol).

Основные функции ICMP:

  • оповещение отправителя с чрезмерным трафиком о необходимости уменьшить интенсивность посылки пакетов; при перегрузке адресат (или промежуточный узел) посылает ICMP-пакеты, указывающие на необходимость сокращения интенсивности входных потоков;
  • контроль времени T жизни дейтаграмм и их ликвидация при превышении T или искажении данных в заголовке;
  • оповещение отправителя о недостижимости адресата; отправление ICMP-пакета с сообщением о невозможности достичь адресата осуществляет маршрутизатор;
  • формирование и посылка временных меток (измерение задержки) для контроля Tν -времени доставки пакетов, что нужно для "оконного" управления. Например, время доставки Tν определяется следующим образом. Отправитель формирует ICMP-запрос с временной меткой и отсылает пакет. Получатель меняет адреса местами и отправляет пакет обратно. Отправитель сравнивает метку с текущим временем и тем самым определяет Tν

ICMP-пакеты вкладываются в IP-дейтаграммы при доставке.

Основные функции протоколов мониторинга заключаются в сборе информации о состоянии сети, предоставлении этой информации нужным лицам путем посылки ее на соответствующие узлы, возможном автоматическом принятии необходимых управляющих мер.

Собственно собираемая информация о состоянии сети хранится в базе данных под названием MIB (Management Information Base). Примеры данных в MIB: статистика по числу пакетов и байтов, отправленных или полученных правильно или с ошибками, длины очередей, максимальное число соединений и др.

Протокол SNMP относится к прикладному уровню в стеке протоколов TCP/IP. Он работает по системе менеджер - агент. Менеджер (серверная программа SNMP) посылает запросы агентам, агенты (программы SNMP объектов управления) устанавливаются в контролируемых узлах, они собирают информацию (например, о загрузке, очередях, временах совершения событий) и передают ее серверу для принятия нужных мер. В общем случае агентам можно поручить и обработку событий, и автоматическое реагирование на них. Для этого в агентах имеются триггеры, фиксирующие наступление событий, и средства их обработки. Команды SNMP могут запрашивать значения объектов MIB, посылать ответы, менять значения параметров.

Чтобы послать команду SNMP, используют транспортный протокол UDP.

Одной из проблем управления по SNMP является защита агентов и менеджеров от ложных команд и ответов, которые могут дезорганизовать работу сети. Используется шифрование сообщений, но это снижает скорость реакции сети на происходящие события.

Расширением SNMP являются протоколы RMON (Remote Monitoring) для сетей Ethernet и Token Ring и RMON2 для сетевого уровня. Преимущество RMON заключается в меньшем трафике, так как здесь агенты более самостоятельны и сами выполняют часть необходимых управляющих воздействий на состояние контролируемых ими узлов.

На базе протокола SNMP разработан ряд мощных средств управления, примерами которых могут служить продукт Manage WISE фирмы Novell или система UnicenterTNG фирмы Computer Associates. С их помощью администратор сети может выполнять следующие действия: 1 - строить 2D-изображение топологии сети, причем на разных иерархических уровнях, перемещаясь от региональных масштабов до подсетей ЛВС (при интерактивной работе); 2 - разделять сеть на домены управления по функциональным, географическим или другим принципам с установлением своей политики управления в каждом домене; 3 -разрабатывать нестандартные агенты с помощью имеющихся инструментальных средств.

Дальнейшее развитие подобных систем может идти в направлении связи сетевых ресурсов с проектными или бизнес-процедурами и сетевых событий с событиями в процессе проектирования или управления предприятиями. Тогда система управления сетью станет комплексной системой управления процессами проектирования и управления предприятием.

Рассмотрим другие стеки протоколов.

Протоколы SPX/IPX

В сетях Netware фирмы Novell используются протоколы SPX (Sequence Packet Exchange) и IPX (Internet Packet Exchange) для транспортного и сетевого уровней соответственно.

Адрес получателя в пакете IPX состоит из номера сети (фактически номера сервера), адреса узла (это имя сетевого адаптера) и имени гнезда (прикладной программы). Пакет имеет заголовок в 30 байт и блок данных длиной до 546 байт. В пакете SPX заголовок включает 42 байт, т. е. блок данных не более 534 байт.

Установление виртуального соединения в SPX (создание сессии) заключается в посылке клиентом запроса connect, возможная реакция сервера - connected (успех) или disconnected (отказ). Запрос на разъединение возможен как от сервера, так и от клиента.

После установления соединения передача ведется по дейтаграммному протоколу IPX.

Сети Х.25 и Frame Relay

Сети Х.25, работающие по одноименному стеку протоколов, предложенному международным телекоммуникационным союзом ITU (International Telecommunication Union), относятся к первому поколению сетей коммутации пакетов. Протоколы Х.25 разработаны еще в 1976 г. В свое время они получили широкое распространение, в России их популярность сохраняется, поскольку эти сети хорошо приспособлены к работе на телефонных каналах невысокого качества, составляющих в России значительную долю каналов связи. С помощью сетей Х.25 удобно соединять локальные сети в территориальную сеть, устанавливая между ними мосты Х.25.

Стандарт Х.25 относится к трем нижним уровням ЭМВОС, т. е. включает протоколы физического, канального и сетевого уровней. На сетевом уровне используется коммутация пакетов.

Характеристика сети Х.25:

  • пакет содержит адресную, управляющую, информационную и контрольную части, т. е. в его заголовке имеются флаг, адреса отправителя и получателя, тип кадра (служебный или информационный), номер кадра (используется для правильной сборки сообщения из пакетов);
  • на канальном уровне применено "оконное" управление, размер окна задает число кадров, которые можно передать до получения подтверждения (это число равно 8 или 128);
  • передача данных по виртуальным (логическим) каналам, это относится к сетям с установлением соединения;
  • узлы на маршруте, обнаружив ошибку, ликвидируют ошибочный пакет и запрашивает повторную передачу пакета.

В сетевом протоколе Х.25 значительное внимание уделено контролю ошибок (в отличие, например, от протокола IP, в котором обеспечение надежности передается на транспортный уровень). Эта особенность приводит к уменьшению скорости передачи, т. е. сети Х.25 низкоскоростные, но при этом их можно реализовать на каналах связи с невысокой помехоустойчивостью. Контроль ошибок производится при инкапсуляции и восстановлении пакетов (во всех промежуточных узлах), а не только в оконечном узле.

При использовании на физическом уровне телефонных каналов для подключения к сети достаточно иметь компьютер и модем. Подключение осуществляет провайдер (провайдерами для Х.25 являются, например, владельцы ресурсов сетей Sprint, Infotel, "Роспак" и др.)

Типичная структура сети Х.25 показана на рис. 2.10.

Типичная АКД в Х.25 - синхронный модем с дуплексным бит-ориентированным протоколом. Скорости от 9,6 до 64 кбит/с. Протокол физического уровня для связи с цифровыми каналами передачи данных - Х.21, а с аналоговыми-Х.2 Ibis.

 


Рис. 2.10. Сеть Х.25

В сетях пакетной коммутации Frame Relay (FR) в отличие от сетей Х.25 обеспечивается большая скорость передачи данных (до 45 Мбит/с) за счет исключения контроля ошибок в промежуточных узлах, так как контроль, адресация, инкапсуляция и восстановление выполняются в оконечных пунктах, т.е. на транспортном уровне. В промежуточных узлах ошибочные пакеты могут только отбрасываться, а запрос на повторную передачу происходит от конечного узла средствами уровня, выше сетевого. Но для реализации FR нужны помехоустойчивые каналы передачи данных.

Другая особенность FR-пункты доступа фиксируются при настройке порта подключения к сети, а не динамически в процессе установления соединения. Поэтому наиболее подходящая сфера применения FR - объединение совокупности ЛВС, находящихся на значительном расстоянии друг от друга.

В сетях FR сигнализация о перегрузках осуществляется вставкой соответствующих битов в заголовок пакетов, проходящих по перегруженному маршруту, управление потоками предусматривает динамическое распределение полосы пропускания между соединениями. Поэтому возможна, в отличие от сетей Х.25, не только передача данных, но и передача оцифрованного голоса (так как для передачи голоса обычно требуется режим реального времени). По этой же причине FR лучше приспособлены для передачи неравномерного трафика, характерного для связей между ЛВС.

Сети FR также получают широкое распространение в России по мере развития помехоустойчивых каналов связи, так как облегчен переход к ним от сетей Х.25. Заметим, что радикальное повышение скоростей передачи интегрированной информации связывают с внедрением сетей асинхронной передачи данных.

Сети ATM

Технология асинхронной передачи данных, реализованная в сетях ATM (Asynchronous Transfer Mode), относится к перспективным технологиям, обеспечивающим высокие скорости передачи разнородной информации (данных, речевых и видеосигналов) на значительные расстояния. Действительно, передача голосовой и видеоинформации обычно требуется в режиме реального времени,

видеоинформация характеризуется большими объемами, и, следовательно, задержки должны быть только малыми (например, для голосовой связи - не более 6 с).

Технология ATM представляет собой быструю коммутацию коротких пакетов фиксированной длины (53 байт), называемых ячейками. В силу этой причины и саму технологию ATM иногда называют коммутацией ячеек.

Сети ATM относят к сетям с установлением соединения, но возможны варианты и без установления соединения. Соединения могут быть постоянными и динамическими. Первые устанавливаются и разрываются администратором сети, их действие продолжительно, для каждого нового обмена данными между абонентами постоянного соединения не нужно тратить время на его установление. Вторые устанавливаются и ликвидируются автоматически для каждого нового сеанса связи.

Каждое соединение получает свой идентификатор, который указывается в заголовке ячеек. При установлении соединения каждому коммутатору на выбранном пути следования данных передается таблица соответствия идентификаторов и портов коммутаторов. Коммутатор, распознав идентификатор, направляет ячейку в нужный порт. Непосредственное указание в заголовке адресов получателя и отправителя не требуется, заголовок короткий - всего 5 байт.

Высокие скорости в ATM обеспечиваются рядом технических решений.

Во-первых, большое число каналов с временным мультиплексированием (TDM) можно использовать для параллельной передачи частей одного и того же "объемного" сообщения (статистическое мультиплексирование). При этом цикл синхронизации состоит из отдельных участков, длины участка и ячейки совпадают. Под конкретное сообщение можно выделить N интервалов, совокупность которых называют виртуальным каналом. Скорость передачи можно регулировать, изменяя N. Если сеть ATM оказывается перегруженной, то во избежание потери информации возможна буферизация данных для выравнивания загрузки каналов. Регулирование загрузки (управление потоком) осуществляется периодическим включением (обычно через 32 кадра) служебной -ячейки в информационный поток. В эту ячейку промежуточные коммутаторы и конечный узел могут вставлять значения управляющих битов, сигнализирующие о перегрузке или недогрузке канала. -ячейка от конечного узла передается в обратном направлении источнику сообщения, который может соответственно изменить режим передачи. В частности, применяется режим занятия всех свободных ресурсов при перегрузке. Таким образом, происходит динамическое перераспределение нагрузки.

Во-вторых, отрицательные квитанции при искажениях собственно сообщений (но не заголовков) возможны только от конечного пункта. Это исключает потери времени в промежуточных пунктах на ожидание подтверждений. Такой способ иногда называют коммутацией кадров (в отличие от коммутации пакетов). Контрольный код (четырехбайтный циклический) для информационной части сообщения имеется только в конце последнего пакета сообщения.

В-третьих, упрощена маршрутизация. Собственно установление соединения выполняется аналогично этой процедуре в TCP/IP. Однако далее номер рассчитанного маршрута помещается в заголовок каждого пакета, и для них не нужно заново определять маршрут по таблицам маршрутизаторов при прохождении через сеть. Такую передачу называют маршрутизацией от источника. Другими словами, осуществляется передача с установлением соединения (в отличие, например, от IP). При этом клиент направляет серверу запрос в виде специального управляющего кадра. Кадр проходит через промежуточные маршрутизаторы и (или) коммутаторы, в которых соединению (каналу) присваивается номер VPI/VCI (идентификаторы) маршрута. Если передача адресована нескольким узлам, то соответствующие идентификаторы в коммутаторах присваиваются нескольким каналам.

В-четвертых, фиксированная длина пакетов (кадров) упрощает алгоритмы управления и буферизации данных, исключает необходимость инкапсуляции или конвертирования пакетов при смене форматов в промежуточных сетях (если они соответствуют формату ячейки ATM), упрощает коммутацию.

В технологии ATM введены три уровня (рис. 2.11). Адаптационный уровень AAL аналогичен транспортному уровню в ЭМВОС, на нем происходит разделение сообщения на пакеты (до 64 К байт) с управляющей и контрольной информацией, те, в свою очередь, делятся на 48-байтные ячейки, выполняется преобразование битовых входных потоков в один поток с соблюдением пропорций между числом ячеек для данных, голосовой и видеоинформации, определяется вид сервиса. При этом должна поддерживаться скорость передачи данных, необходимая для обеспечения соответствующего сервиса. На следующем уровне, называемом ATM, к каждой ячейке добавляется пятибайтовый заголовок с маршрутной информацией. Третий уровень - физический Р - служит для преобразования данных в электрические или оптические сигналы.

Физические среды для ATM-сетей-каналы SDH или Т1 / Т4 (Е1 /Е4), реализуемые на ВОЛС, витой паре или коаксиальном кабеле. При использовании магистральной сети SDH для передачи информации по технологиям ATM или FR сети ATM и FR называют наложенными вторичными сетями. Доступ к транспортной сети осуществляется через специальные мультиплексоры.


Рис. 2.11. Уровни протоколов в технологии ATM

Примером высокоскоростной магистральной сети передачи данных может служить московская сеть SDH, созданная фирмой МТУ-Информ. В ней имеются уровни с кольцами STM-16, STM-4, STM-1. Надежность передачи данных высокая, поскольку для каждого потока данных образуются два канала-основной и дублирующий, по которым одна и та же информация передается параллельно. Подключение к сети-через FR или ATM на расстоянии до 3 км.

Каналы ATM со скоростями 51,155,622 и 2488 Мбит/с называют каналами ОС-1, ОС-3, ОС-12 и ОС-48 соответственно. К сожалению, в распространенных протоколах, таких, как TCP/IP или Х.25, пакеты имеют переменную длину, что вызывает трудности совмещения программно-аппаратных средств распространенных технологий и ATM, в связи с чем замедляется внедрение ATM.

В настоящее время используются также промежуточные технологии. Таковой прежде всего является рассмотренная технология ретрансляции кадров (FR), в которой применена коммутация пакетов длиной 4 кбит с установлением соединения.

Проблемы совмещения технологий ATM и существующих сетей решаются организацией ATM Forum и рядом промышленных фирм. Разрабатываются коммутаторы и концентраторы, обеспечивающие, совместную работу ATM-магистралей, сетей, работающих по протоколам TCP/IP, и локальных сетей, таких, как Ethernet, Fast Ethernet, FDDI. В частности, разработаны спецификации IP-over-ATM и более современные МРОА (Multi-Protocol-Over-ATM), a также реализующие их средства для передачи IP-дейтаграмм и пакетов, сформированных по другим протоколам, через ATM-сети.

При реализации TCP/IP поверх ATM-протоколов необходимо сохранить высокую скорость ATM-сети. Однако этому препятствуют возможные потери при передаче некоторых 53-байтных ячеек, на которые разбивается ТСР-сег-мент. Такая потеря вызывает необходимость повторной передачи всех ячеек сегмента, поскольку в ATM контроль правильности передачи ведется по отношению ко всему сообщению (в данном случае сегменту). Существенно сократить число повторно передаваемых ячеек позволяют специальные алгоритмы.

 

Промышленные сети

В интегрированных системах проектирования и управления на уровнях цеховом и ниже используются специальные вычислительные сети АСУТП, называемые промышленными (или Fieldbus). В число узлов сети входят компьютеры, выполняющие функции числового управления технологическим оборудованием и функции SCADA.

Во встроенных системах использование оборудования разных производителей возможно, только если эти системы являются открытыми, что, в свою очередь, диктует необходимость стандартизации промышленных шин. Однако разнообразие условий работы систем и требований к ним, а также исторические причины развития технологии обусловливают использование на практике ряда унифицированных решений.

Различают последовательные и параллельные шины. Примерами последовательных шин могут служить Fiber Channel, Fire Wire 1394, USB, Ethernet, a параллельных шин - VMEbus, PCI и др.

На верхних уровнях иерархии систем для связи компьютеров между собой, как правило, используют последовательные шины, характерные для ЛВС. На цеховом уровне в настоящее время преимущественно используют сети Ethernet (IEЕЕ 802.3).

На среднем уровне АСУТП для связи компьютеров с системами числового программного управления (ЧПУ) обычно применяют сети Fieldbus, называемые полевыми шинами. Под Fieldbus понимают физический способ соединения устройств и протоколы взаимодействия, т. е. в полевых шинах имеют место протоколы трех уровней: физического, канального, прикладного. К полевым шинам относятся последовательные шины Profibus, Interbus/S, CANbus и др. Особенностями полевых шин являются режим реального времени, детерминированность поведения, повышенная надежность при работе в промышленной среде. Для связи компьютеров с высокоскоростными периферийными устройствами служат шины Infiniband, Fiber Channel, USB, Fire Wire 1394, с низкоскоростными устройствами связь осуществляют через интерфейсы RS-232, RS-422,RS-485.

На нижнем уровне АСУТП модули контроллеров, датчиков, измерительного и другого оборудования в пределах одного функционального узла (например, соединение слотов в крейте) соединяются чаще всего посредством магист-рально-модульных параллельных шин, как правило шин VMEbus или Сот-pactPCI.

Шина VMEbus стандартизована в 1987 г. (стандарт IEЕЕ 1014). Конструктивное оформление выполняется по стандартам Евромеханики (IEЕЕ 1101.10 и IEЕЕ 1101.11). В крейте может быть до 21 слота, в которых размещаются платы унифицированных размеров. Информационная скорость-до 320 Мбайт/с. Шина эффективно работает в условиях большого числа прерываний от устройств ввода-вывода, что важно для встроенного оборудования.

Шина CompactPCI (PCI - Peripheral Component Interconnect) - мультиплексируемая синхронная шина, стандартизована в середине 1990-х годов. Фактически CompactPCI - это известная шина PCI, выполненная в формате Евромеханики. Максимальное число модулей в крейте 16. Максимальная пропускная способность 132 Мбайт/с для 32-разрядных передач или 264 Мбайт/с - для 64-разрядных передач.

Программная связь с аппаратурой нижнего уровня (датчиками, исполнительными устройствами) происходит через драйверы. Межпрограммные связи реализуются через интерфейсы, подобные OLE. Для упрощения создания систем разработан стандарт ОРС (OLE for Process Control).

Обычными для промышленных сетей являются предельные расстояния между узлами (датчиками, исполнительными устройствами и контроллерами) в сотни метров, размеры сообщений - до 1 К байт (в сжатой форме). Опрос датчиков периодический. Важное требование к промышленной сети - обеспечение работы в реальном масштабе времени, поэтому для АСУТП сети типа Ethernet не подходят, поскольку в них не гарантируется ограничение задержек сверху.

Пример промышленной сети-Profibus, скорость 12 Мбод, пакеты до 247 байт, расстояния до 1,5 км. Имеет выход в сеть АСУП, в качестве которой чаще всего используется сеть Ethernet. Наряду с Profibus, используют и другие протоколы, например, популярен протокол CAN. На физическом уровне в Fieldbus часто используют интерфейс RS-485 - витая пара, длина сегмента до 1,2 км, на сегменте может быть до 32 узлов.

 

<== предыдущая лекция | следующая лекция ==>
Управляемость | Системы управления в составе комплексных автоматизированных систем
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 418; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.116 сек.