Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свопинг и виртуальная память

Перемещаемые разделы

Распределение памяти динамическими разделами

Распределение памяти фиксированными разделами

Алгоритмы распределения реальной памяти.

Следует ли назначать каждому процессу одну непрерывную область физической памяти или можно выделять память «кусками»? Должны ли сегменты программы, загруженные в память, находиться на одном месте в течение всего периода выполнения процесса или можно ее время от времени сдвигать? Что делать, если сегменты программы не помещаются в имеющуюся память? Разные ОС по-разному отвечают на эти и другие базовые вопросы управления памятью. Рассмотрим общие подходы к распределению памяти. Алгоритмы распределения памяти разделены на два класса: алгоритмы, в которых используется перемещение сегментов процессов между оперативной памятью и диском, и алгоритмы, в которых внешняя память не привлекается.

Простейший способ управления оперативной памятью состоит в том, что память разбивается на несколько областей фиксированной величины, называемых разделами. Такое разбиение может быть выполнено вручную оператором во время старта системы или во время ее установки. После этого границы разделов не изменяются.

Очередной новый процесс, поступивший на выполнение, помещается либо в общую очередь (рис. 5.8, а), либо в очередь к некоторому разделу (рис, 5.8, б).

Подсистема управления памятью в этом случае выполняет следующие задачи.

□ Сравнивает объем памяти, требуемый для вновь поступившего процесса, с размерами свободных разделов и выбирает подходящий раздел.

□ Осуществляет загрузку программы в один из разделов и настройку адресов. Уже на этапе трансляции разработчик программы может задать раздел, в котором ее следует выполнять. Это позволяет сразу, без использования перемещающего загрузчика, получить машинный код, настроенный на конкретную область памяти.

При очевидном преимуществе — простоте реализации, данный метод имеет существенный недостаток — жесткость. Так как в каждом разделе может выполняться только один процесс, то уровень мультипрограммирования заранее ограничен числом разделов. Независимо от размера программы она будет занимать весь раздел. Так, например, в системе с тремя разделами невозможно выполнять одновременно более трех процессов, даже если им требуется совсем мало памяти. С другой стороны, разбиение памяти на разделы не позволяет выполнять процессы, программы которых не помещаются ни в один из разделов, но для которых было бы достаточно памяти нескольких разделов.

Такой способ управления памятью применялся в ранних мультипрограммных ОС. Однако и сейчас метод распределения памяти фиксированными разделами находит применение в системах реального времени, в основном благодаря небольшим затратам на реализацию. Детерминированность вычислительного процесса систем реального времени (заранее известен набор выполняемых задач, их требования к памяти, а иногда и моменты запуска) компенсирует недостаточную гибкость данного способа управления памятью.

В этом случае память машины не делится заранее на разделы. Сначала вся память, отводимая для приложений, свободна. Каждому вновь поступающему на выполнение приложению на этапе создания процесса выделяется вся необходимая ему память (если достаточный объем памяти отсутствует, то приложение принимается на выполнение и процесс для него не создается). После завершения процесса память освобождается, и на это место может быть загружен другой процесс. Таким образом, в произвольный момент времени оперативная память предоставляет собой случайную последовательность занятых и свободных участков (разделов) произвольного размера. На рис. 5.9 показано состояние памяти в различные моменты времени при использовании динамического распределения. Так, в момент t0 в памяти находится только ОС, а к моменту t1 память разделена между 5 процессами, причем процесс П4, завершаясь, покидает память. На освободившееся от процесса П4 место загружается процесс П6, поступивший в момент t3

Функции операционной системы, предназначенные для реализации данного метода управления памятью, перечислены ниже.

□ Ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти.

□ При создании нового процесса — анализ требований к памяти, просмотр таблицы свободных областей и выбор раздела, размер которого достаточен для размещения кодов и данных нового процесса. Выбор раздела может осуществляться по разным правилам, например: «первый попавшийся раздел достаточного размера», «раздел, имеющий наименьший достаточный размер» или «раздел, имеющий наибольший достаточный размер».

□ Загрузка программы в выделенный ей раздел и корректировка таблиц свободных и занятых областей. Данный способ предполагает, что программный код не перемещается во время выполнения, а значит, настройка адресов может быть проведена единовременно во время загрузки.

□ После завершения процесса корректировка таблиц свободных и занятых областей.

По сравнению с методом распределения памяти фиксированными разделами данный метод обладает гораздо большей гибкостью, но ему присущ очень серьезный. Недостаток — фрагментация памяти. Фрагментация — это наличие большого кланесмежных участков свободной памяти очень маленького размера, (фрагментов). Настолько маленького, что ни одна из вновь поступающих программ не может поместиться ни в одном из участков, хотя суммарный объем фрагментов может составить значительную величину, намного превышающую требуемый объем памяти.

Распределение памяти динамическими разделами лежит в основе подсистем управления памятью многих мультипрограммных операционных системах 60-70-х годов, в частности такой популярной операционной системы, как OS/360.

Одним из методов борьбы с фрагментацией является перемещение всех занятых участков в сторону старших или младших адресов, так, чтобы вся свободная память образовала единую свободную область (рис. 5.10). В дополнение к функциям, которые выполняет ОС при распределении памяти динамическими разделами, в данном случае она должна еще время от времени копировать содержимое разделов из одного места памяти в другое, корректируя таблицы свободных и занятых областей. Эта процедура называется сжатием. Сжатие может выполняться либо при каждом завершении процесса, либо только тогда, когда для вновь создаваемого процесса нет свободного раздела достаточного размера. В первом случае требуется меньше вычислительной работы при корректировке таблиц свободных и занятых областей, а во втором — реже выполняется процедура сжатия.

Так как программы перемещаются по оперативной памяти в ходе своего выполнения, то в данном случае невозможно выполнить настройку адресов с помощи перемещающего загрузчика. Здесь более подходящим оказывается динамическое образование адресов.

Хотя процедура сжатия и приводит к более эффективному использованию памяти, она может потребовать значительного времени, что часто перевешивает преимущества данного метода.

Концепция сжатия применяется и при использовании других методов распределения памяти, когда отдельному процессу выделяется не одна сплошная область памяти, а несколько несмежных участков памяти произвольного размера (сегментов). Такой подход был использован в ранних версиях OS/2, в которых память распределялась сегментами, а возникавшая при этом фрагментация устранялась путем периодического перемещения сегментов.

Контрольные вопросы: . Домашнее задание:
  1. Конспект лекций
  2. Дома самостоятельно изучить Страничное и Сегментное распределение памяти. В тетради выписать достоинства и недостатки.
Сравните сегментный и страничный способы распределения виртуальной памяти. Перечислите достоинства и недостатки каждого.

Лекция 16 (2/32)

Проверка Д/З: 1). У 6 чел. Проверить конспекты 2). 3 чел. спросить по предыдущему (см. выше)

 

 

<== предыдущая лекция | следующая лекция ==>
Типы адресов | Методы распределения памяти с использованием дискового пространства. Уже достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память
Поделиться с друзьями:


Дата добавления: 2013-12-12; Просмотров: 727; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.