Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод Гаусса. Рассмотрим систему (1). Как отмечалось выше, если определитель этой системы не равен нулю, то будет иметь место един

Метод обратных матриц

Правило Крамера

Прямые методы решения СЛАУ

Рассмотрим систему (1). Как отмечалось выше, если определитель этой системы не равен нулю, то будет иметь место единственное решение. Это необходимое и достаточное условие. Тогда по правилу Крамера

, (4)

где Dk – определитель, получающийся из D при замене элементов a 1 k, a 2 k,..., ank k -го столбца (соответствующими) свободными членами b 1, b 2,..., bn из (1), или

,

где Аik алгебраическое дополнение элемента aik в определителе D. Стоит существенная проблема вычисления определителей высоких порядков.

Дана система . Умножим левую и правую части этого выражения на А –1:

; .

При его реализации стоит проблема нахождения обратной матрицы А –1, с выбором экономичной схемы ее получения и с достижением приемлемой точности. Эти вопросы рассмотрим ниже.

Этот метод является наиболее распространенным методом решения СЛАУ. В его основе лежит идея последовательного исключения неизвестных, в основном, приводящая исходную систему к треугольному виду, в котором все коэффициенты ниже главной диагонали равны нулю. Существуют различные вычислительные схемы, реализующие этот метод. Наибольшее распространение имеют схемы с выбором главного элемента либо по строке, либо по столбцу, либо по всей матрице. С точки зрения простоты реализации, хотя и с потерей точности, перед этими схемами целесообразней применять так называемую схему единственного деления. Рассмотрим ее суть.

Посредством первого уравнения системы (1) исключается х 1 из последующих уравнений. Далее посредством второго уравнения исключается х 2 из последующих уравнений и т.д. Этот процесс называется прямым ходом Гаусса. Исключение неизвестных повторяется до тех пор, пока в левой части последнего n -го уравнения не останется одно неизвестное хn

a ¢ nnxn = b ¢, (5)

где a ¢ nn и b ¢ – коэффициенты, полученные в результате линейных (эквивалентных) преобразований.

Прямой ход реализуется по формулам

а * mi = ami;

b * m = bm (6)

где m – номер уравнения, из которого исключается xk;

k – номер неизвестного, которое исключается из оставшихся (nk) уравнений, а также обозначает номер уравнения, с помощью которого исключается xk;

i – номер столбца исходной матрицы;

akk – главный (ведущий) элемент матрицы.

Во время счета необходимо следить, чтобы akk ¹ 0. В противном случае прибегают к перестановке строк матрицы.

Обратный ход метода Гаусса состоит в последовательном вычислении xn, xn –1,..., x 1, начиная с (5) по алгоритму

xn = b ¢ / a ¢ nn; . (7)

Точность полученного решения оценивается посредством «невязки» (3). В векторе невязки (r 1, r 2,..., rn)Т отыскивается максимальный элемент и сравнивается с заданной точностью e. Приемлемое решение будет, если r max < e. В противном случае следует применить схему уточнения решения.

 

<== предыдущая лекция | следующая лекция ==>
Методы решения СЛАУ | 
Поделиться с друзьями:


Дата добавления: 2013-12-11; Просмотров: 410; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.