Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод Гаусса

Элементарные преобразования систем.

Метод Крамера.

 

Теорема. Система из n уравнений с n неизвестными

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

,

где D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

 

Пример. Найти решение системы уравнений:

 

 

.

.

 

  1. Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.
  2. Перестановка уравнений местами.
  3. Удаление из системы уравнений, являющихся тождествами для всех х.

 

 

В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

 

Получим:

,

где , , где i = 2, 3, …, n; j = 2, 3, …, n+1.

 

Далее повторяем эти же действия для второго уравнения, потом для третьего и т.д.

 

Пример. Решить систему линейных уравнений методом Гаусса.

 

Составим расширенную матрицу системы.

 

 

Таким образом, исходная система может быть представлена в виде:

 

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

<== предыдущая лекция | следующая лекция ==>
Матричный метод решения систем линейных уравнений | 
Поделиться с друзьями:


Дата добавления: 2013-12-11; Просмотров: 279; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.