Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Измерительные преобразователи

ЛЕКЦИЯ

ТЕМА №8 «БАЗОВЫЕ ЭЛЕМЕНТЫ ТЕХНИЧЕСКОГО ОБЕСПЕЧЕНИЯ АВТОМАТИЧЕСКИХ СИСТЕМ ИЗМЕРЕНИЙ И КОНТРОЛЯ»

 

ВОПРОСЫ

 

1. Измерительные преобразователи.

2. Операционные усилители.

3. Коммутация измерительных сигналов.

4. Аналого-цифровое преобразование.

 

ЛИТЕРАТУРА

1. Парахуда Р.Н., Шевцов В.И. Автоматизация измерений и контроля: Письменные лекции. – СПб., СЗТУ, 75 с.

 

 

Измерительные преобразователи

Измерительный преобразователь (ИП) - техническое средство с нормированными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований или передачи (РМГ 29-99).

В зависимости от назначения ИП делятся на масштабные, служащие для изменения значения величины в заданное число раз, и преобразователи рода величины: преобразователи электрических величин в электрические величины (электрическая величина - в цифровой код; напряжение - в частоту); неэлектрических величин в электрические (терморезисторы, термопары, тензодатчики); магнитных величин в электрические (индукционные, гальванометрические преобразователи); электрических величин в неэлектрические (измерительные механизмы электромеханических приборов).

По месту, занимаемому в измерительной цепи, ИП делятся на первичные, промежуточные и т. д. На первичный ИП непосредственно воздействует измеряемая физическая величина (ФВ).

Конструктивно ИП выполняются либо в виде отдельных блоков, либо являются составной частью СИ.

 

1.1.1. Классификация измерительных преобразователей

 

Измерительные преобразователи классифицируют по роду измеряемой ФВ (температуры, давления, влажности и др.) и по выходной величине (генераторные, параметрические).

Выходным сигналом генераторных датчиков является ЭДС, напряжение, ток или электрический заряд, функционально связанные с измеряемой величиной. В параметрических преобразователях выходной величиной является изменение параметра электрической цепи (R, L, С).

Генераторные измерительные преобразователи

 

Термоэлектрические преобразователи (термопары). Эти

преобразователи применяются для измерения температуры. Принцип действия термопары поясняется рис. 5.2а, где изображена термоэлектрическая цепь, составленная из двух разнородных проводников А и В. Точки 1 и 2 соединения проводников называются спаями термопары. Если температуры t спаев 1 и 2 одинаковы, то ток в термоэлектрической цепи отсутствует. Если же температура одного из спаев (например, спая 1) выше, чем температура спая 2, то в цепи возникает термоэлектродвижущая сила (ТЭДС) Е, зависящая от разности температур спаев

.

 

Если поддерживать температуру спая 2 постоянной, то . Эту зависимость используют для измерения температуры с помощью термопар. Для измерения ТЭДС электроизмерительный прибор включают в разрыв спая 2 (рис. б). Спай 1 называют горячим (рабочим) спаем, а спай 2 — холодным (концы — 2 и 2' называют свободными концами).

Чтобы ТЭДС термопары однозначно определялась температурой горячего спая, необходимо температуру холодного спая поддерживать всегда одинаковой.

Для изготовления электродов термопар используют как чистые металлы, так и специальные сплавы стандартизованного состава. Градуировочные таблицы для стандартных термопар составлены при условии равенства температуры свободных концов О °С. На практике не всегда удается поддерживать эту температуру. В таких случаях в показания термопары вводят поправку на температуру свободных концов. Существуют схемы для автоматического введения поправок.

Конструктивно термопары выполняются в виде двух изолированных термоэлектродов с рабочим спаем, получаемым способом сварки, помещенных в защитную арматуру, предохраняющую термопару от внешних воздействий и повреждений. Рабочие концы термопары выведены в головку термопары, снабженную зажимами для включения термопары в электрическую цепь.

В зависимости от конструкции термопары могут иметь тепловую инерцию, характеризуемую постоянной времени от единиц секунд до нескольких минут, что ограничивает возможность их применения для измерения быстроменяющихся температур.

Кроме включения измерительного прибора в спай термопары возможно включение прибора «в электрод»; т.е. в разрыв одного из термоэлектродов (рис. 5.2в). Такое включение позволяет измерять разность температур. Например, может быть измерен перегрев обмоток трансформатора над температурой окружающей среды при его испытаниях. Для этого рабочий спай термопары заделывают в обмотку, а свободный спай оставляют при температуре окружающей среды.

Требование постоянства температуры свободных концов термопары вынуждает по возможности удалять их от места измерения. Для этой цели применяют так называемые удлиняющие или компенсационные провода КП, подключаемые к свободным концам термопары с соблюдением полярности (рис. 5.2г). Компенсационные провода составляются из разнородных проводников, которые в интервале возможных колебаний температуры свободных концов развивают в паре между собой такую же ТЭДС, как и термопара. Максимальная развиваемая стандартными термопарами ТЭДС составляет от единиц до десятков милливольт.

Пьезоэлектрические преобразователи. Такие преобразователи основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, турмалина, сегнетовой соли и др.) под влиянием механических напряжений. Пьезоэлектрическим эффектом обладают также некоторые поляризованные керамические материалы титанат бария, цирконат-титанат свинца).

Если из кристалла кварца вырезать пластинку в форме параллелепипеда с гранями, расположенными перпендикулярно оптической Oz, механической Оу и электрической Ох осям кристалла (рис. 5.3),

Рис. 5.3. Пластина из кристалла кварца

 

то при воздействии на пластину усилия Fx, направленного вдоль электрической оси, на гранях х появляются заряды

Qx=KnFx

где Кп — пьезоэлектрический коэффициент (модуль).

При воздействии на пластину усилия Fy вдоль механической оси, на тех же гранях х возникают заряды

Qy=KnFya/e,

где а и b — размеры граней пластины.

Механическое воздействие на пластину вдоль оптической оси появления зарядов не вызывает.

Пьезоэлектрический эффект является знакопеременным: при изменении направления прилагаемого усилия знаки зарядов на поверхности граней меняются на противоположные. Материалы сохраняют свои пьезоэлектрические свойства только при температурах ниже точки Кюри.

Керамические датчики производят по технологии, обычной для радиокерамических изделий — путем прессования или литья под давлением; на керамику наносятся электроды, к электродам привариваются выводы. Для поляризации керамические изделия помещают в сильное электрическое поле, после чего они приобретают свойства пьезоэлектриков.

Электродвижущая сила, возникающая на электродах пьезоэлектрического преобразователя, довольно значительна — единицы вольт. Однако, если сила, приложенная к преобразователю постоянна, то измерить ЭДС трудно, поскольку заряд мал и быстро стекает через входное сопротивление вольтметра. Если же сила переменна и при этом период изменения силы много меньше постоянной времени разряда, определяемой емкостью преобразователя и сопротивлением утечки, то процесс утечки почти не влияет на выходное напряжение преобразователя. При изменении силы F по закону F=Fm sin cot ЭДС также изменяется по синусоидальному закону.

Параметрические измерительные преобразователи

Термометры сопротивления. Термометры сопротивления как и термопары, предназначены для измерения температуры газообразных, твердых и жидких тел, а также температуры поверхности. Принцип действия термометров основан на использовании свойства металлов и полупроводников изменять свое электрическое сопротивление с температурой. Для проводников из чистых металлов эта зависимость в области температур от -200 °С до 0 °С имеет вид:

Rt=R0[l +At+Bt2+C(t-100)t3],

а в области температур от О °С до 630 °С

Rt=R0[l+At+Bt2],

где Rt, Ro — сопротивление проводника при температуре t и 0 °С; А, В, С — коэффициенты; t — температура, °С.

В диапазоне температур от 0 °С до 180 °С зависимость сопротивления проводника от температуры описывается приближенной формулой

Rt=R0[l+at],

где а — температурный коэффициент сопротивления материала проводника (ТКС).

Для проводников из чистого металла а~6-10"3...4-10"3 град"1.

Измерение температуры термометром сопротивления сводится к измерению его сопротивления Rt, с последующим переходом к температуре по формулам или градуировочным таблицам.

Различают проволочные и полупроводниковые термометры сопротивления. Проволочный термометр сопротивления представляет собой тонкую проволоку из чистого металла, закрепленную на каркасе из температуростойкого материала (чувствительный элемент), помещенную В защитную арматуру (рис. 5.4).

Выводы от чувствительного элемента подведены к головке термометра. Выбор для изготовления термометров сопротивления проволок из чистых металлов, а не сплавов, обусловлен тем, что ТКС чистых металлов больше, чем ТКС сплавов и, следовательно, термометры на основе чистых металлов обладают большей чувствительностью.

Промышленностью выпускаются платиновые, никелевые и медные термометры сопротивления. Для обеспечения взаимозаменяемости и единой градуировки термометров стандартизованы величины их сопротивления R0 и ТКС.

Полупроводниковые термометры сопротивления (термисторы) представляют собой бусинки, диски или стержни из полупроводникового материала с выводами для подключения в измерительную цепь.

Промышленность серийно выпускает множество типов термисторов в различном конструктивном оформлении.

Размеры термисторов, как правило, малы — около нескольких миллиметров, а отдельные типы десятых долей миллиметра. Для предохранения от механических повреждений и воздействия среды термисторы защищаются покрытиями из стекла или эмали, а также металлическими чехлами.

Термисторы обычно имеют сопротивление от единиц до сотен килоом; их ТКС в рабочем диапазоне температур на порядок больше, чем у проволочных термометров. В качестве материалов для рабочего тела термисторов используют смеси оксидов никеля, марганца, меди, кобальта, которые смешивают со связующим веществом, придают ему требуемую форму и спекают при высокой температуре. Применяют термисторы для измерения температур в диапазоне от -100 до 300°С. Инерционность термисторов сравнительно невелика. К числу их недостатков следует отнести нелинейность температурной зависимости сопротивления, отсутствие взаимозаменяемости из-за большого разброса номинального сопротивления и ТКС, а также необратимое изменение сопротивления во времени.

Для измерения в области температур, близких к абсолютному нулю, применяются германиевые полупроводниковые термометры.

Измерение электрического сопротивления термометров производится с помощью мостов постоянного и переменного тока или компенсаторов. Особенностью термометрических измерений является ограничение измерительного тока с тем, чтобы исключить разогрев рабочего тела термометра. Для проволочных термометров сопротивления рекомендуется выбрать такой измерительный ток, чтобы мощность, рассеиваемая термометром, не превышала 20... 50 мВт. Допустимая рассеиваемая мощность в термисторах значительно меньше и ее рекомендуется определять экспериментально для каждого термистора.

Тензочувствительные преобразователи (тензорезисторы). В конструкторской практике часто необходимы измерения механических напряжений и деформаций в элементах конструкций. Наиболее распространенными преобразователями этих величин в электрический сигнал являются тензорезисторы. В основе работы тензорезисторов лежит свойство металлов и полупроводников изменять свое электрическое сопротивление под действием приложенных к ним сил. Простейшим тензорезистором может быть отрезок проволоки, жестко сцепленный с поверхностью деформируемой детали. Растяжение или сжатие детали вызывает пропорциональное растяжение или сжатие проволоки, в результате чего изменяется ее электрическое сопротивление. В пределах упругих деформаций относительное изменение сопротивления проволоки связано с ее относительным удлинением соотношением

,

где , R — начальные длина и сопротивление проволоки; , — приращение длины и сопротивления; — коэффициент тензочувствительности.

Величина коэффициента тензочувствительности зависит от свойств материала, из которого изготовлен тензорезистор, а также от способа крепления тензорезистора к изделию. Для металлических проволок из различных металлов = 1... 3,5.

Различают проволочные и полупроводниковые тензорезисторы. Для изготовления проволочных тензорезисторов применяются материалы, имеющие достаточно высокий коэффициент тензочувствительности и малый температурный коэффициент сопротивления. Наиболее употребительным материалом для изготовления проволочных тензорезисторов является константановая проволока диаметром 20... 30 мкм.

Конструктивно, проволочные тензорезисторы представляют собой решетку, состоящую из нескольких петель проволоки, наклеенных на тонкую бумажную (или иную) подложку (рис. 5.5). В зависимости от материала подложки тензорезисторы могут работать при температурах от -40 до +400 °С.

 

 

Существуют конструкции тензорезисторов, прикрепляемых к поверхности деталей с помощью цементов, способные работать при температурах до 800 °С.

Основными характеристиками тензорезисторов являются номинальное сопротивление R, база / и коэффициент тензочувствительности Кт Промышленностью выпускается широкий ассортимент тензорезисторов с величиной базы от 5 до 30 мм, номинальными сопротивлениями от 50 до 2000 Ом, с коэффициентом тензочувствительности 2±0,2.

Дальнейшим развитием проволочных тензорезисторов являются фольговые и пленочные тензорезисторы, чувствительным элементом которых являются решетка из полосок фольги или тончайшая металлическая пленка, наносимые на подложки на лаковой основе.

Тензорезисторы выполняются, на основе полупроводниковых материалов. Наиболее сильно тензоэффект выражен у германия, кремния и др. Основным отличием полупроводниковых тензорезисторов от проволочных является большое (до 50 %) изменение сопротивления при деформации благодаря большой величине коэффициента тензочувствительности.

Индуктивные преобразователи. Индуктивные преобразователи применяются для измерения перемещений, размеров, отклонений формы и расположения поверхностей. Преобразователь состоит из неподвижной катушки индуктивности с магнитопроводом и якоря, также являющегося частью магнитопровода, перемещающегося относительно катушки индуктивности. Для получения возможно большей индуктивности магнитопровод катушки и якорь выполняются из ферромагнитных материалов. При перемещении якоря (связанного, например, со щупом измерительного устройства) изменяется индуктивность катушки и, следовательно, изменяется ток, протекающий в обмотке. На рис. 5.6 приведены схемы индуктивных преобразователей с переменным воздушным зазором (рис. 5.6а) применяемых для измерения перемещения в пределах 0,01... 10 мм; с переменной площадью воздушного зазора (рис. 5.6б), применяемых в диапазоне 5... 20 мм.

 
 

<== предыдущая лекция | следующая лекция ==>
Принцип Аббе | Операционные усилители
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 2617; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.035 сек.