Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические основы электрокардиографии

Электрическим диполем (диполем) называют систему, состоящую из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя).

Электрический диполь

Основной характеристикой диполя (рис.1) является его электрический момент (дипольный момент) — вектор, равный произведению заряда на плечо диполя l,направленный от отрицательного заряда к положительному:

Рис.1

p = ql (3)

Единицей электрического момента диполя является кулон-метр. Поместим диполь в однородное электрическое поле напряженностью Е (рис.2).

На каждый из зарядов диполя действуют силы F+ = qE и F_

= -qE, эти силы равны по модулю, противоположно направлены

создают момент пары сил. Как видно из рисунка 2, он равен

 

 


или в некоторой форме

 

 

Рис.2

Таким образом, на диполь в однородном электрическом поле действует момент силы, зависящий от электрического момента ориентации диполя, а также напряженности поля.

Дипольный электрический генератор (токовый диполь)

В вакууме или в идеальном изоляторе электрический диполь может сохраняться сколь угодно долго. Однако в реальной ситу­ации (электропроводящая среда) под действием электрического поля диполя возникает движение свободных зарядов и диполь ли­бо экранируется, либо нейтрализуется.

Можно к диполю подключить источник напряжения, иными словами, клеммы источника напряжения представить как ди­поль. В этом случае, несмотря на наличие тока в проводящей сре­де, диполь будет сохраняться (рис.3). Резистор R1 является эквивалентом сопротивления проводящей среды, Е — ЭДС источ­ника, r — его внутреннее сопротивление (рис.4).



Рис. 3 Рис.4

 

 

На основании закона Ома для полной цепи

 

 

Можно заключить, что в этом случае сила тока во внешней це­пи будет оставаться почти постоянной, она почти не зависит от свойств среды (при условии r >> R 1). Такая двухполюсная система, состоящая из истока и стока тока, называется дипольным элект­рическим генератором или токовым диполем.

Между дипольным электрическим генератором и электриче­ским диполем имеется большая аналогия, которая основывается на общей аналогии электрического поля в проводящей среде и электростатического поля.

Живые ткани являются источником электрических потенциа­лов (биопотенциалов).

Регистрация биопотенциалов тканей и органов с диагностиче­ской (исследовательской) целью получила название электрогра­фии. Такой общий термин употребляется сравнительно редко, бо­лее распространены конкретные названия соответствующих диаг­ностических методов: электрокардиография (ЭКГ) — регистра­ция биопотенциалов, возникающих в сердечной мышце при ее воз­буждении, электромиография — метод регистрации биоэлектри­ческой активности мышц, электроэнцефалография (ЭЭГ) — метод регистрации биоэлектрической активности головного мозга и др.

В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердце, головной мозг), а с других, соседних тканей, в которых электрические поля этим органом со­здаются. В клиническом отношении это существенно упрощает са­му процедуру регистрации, делая ее безопасной и несложной.

Физический подход к электрографии заключается в создании (выборе) модели электрического генератора, которая соответству­ет картине «снимаемых» потенциалов. В связи с этим здесь воз­никают две фундаментальные теоретические задачи: расчет по­тенциала в области измерения по заданным характеристикам электрического генератора (модели) — прямая задача, расчет ха­рактеристик электрического генератора по измеренному потенци­алу — обратная задача.

Дальнейшие конкретные рассмотрения физических вопросов электрографии сделаны на примере электрокардиографии.

Одной из основных задач теоретической электрокардиографии является вычисление распределения трансмембранного потенци­ала клеток сердечных мышц по потенциалам, измеренным вне сердца. Однако даже чисто теоретически такую задачу решить не­возможно, так как одно и то же «внешнее» проявление биопотен­циалов сердца будет при разном «внутреннем» их распределении.

Физический (биофизический) подход к выяснению связи меж­ду биопотенциалами сердца и их внешним проявлением заключа­ется в моделировании источников этих биопотенциалов.

Все сердце в электрическом отношении представляется как не­который эквивалентный электрический генератор либо чисто умозрительно (гипотетически), либо в виде реального устройства как совокупность электрических источников в проводнике, имею­щем форму человеческого тела. На поверхности проводника при функционировании эквивалентного электрического генератора будет электрическое напряжение, которое в процессе сердечной деятельности возникает на поверхности тела человека. Предпола­гают, что среда, окружающая сердце, безгранична и однородна с удельной электрической проводимостью у.

В этом случае для потенциала в некоторой точке можно запи­сать формулу. При больших значениях r в рамках допущений, и в этом случае можно ограничиться дипольным приближением и исполь­зовать формулу для потенциала поля диполя.

Это означает, что в мультипольном эквивалентном генераторе сердца основная часть в потенциал на поверхности тела человека вносится его дипольной составляющей. Иначе говоря, моделиро­вать электрическую деятельность сердца вполне допустимо, если использовать дипольный эквивалентный электрический генера­тор. При условии ограниченности (конечности) окружающей сре­ды можно прийти к известному выражению.

 

Рис.5

Дипольное представление о сердце лежит в основе теории отведений Эйнтховена. Согласно ей, сердце есть диполь с дипольным моментом р с1, который поворачивается, изменяет свое положение и точку приложения (изменением точки приложения этого вектора часто пренебрегают) за время сердечного цикла.

На рис. 5 показаны положения вектора р си эквипотенциальных линий для момента времени, когда дипольный момент максимален; это со­ответствует «зубцу» R на электрокар­диограмме (см. рис.).

В табл. 2 приведены значения максимального дипольного мо­мента сердца для человека и некоторых животных, они сопостав­ляются с массами сердца и тела.

В. Эйнтховен предложил снимать разности биопотенциалов сердца между вершинами равностороннего треугольника, кото­рые приближенно расположены в правой руке (ПР), левой руке (ЛР) и левой ноге (ЛН) (рис.6, а). На рис. 6, б схематиче­ски изображен этот треугольник.

По терминологии физиологов, разность биопотенциалов, реги­стрируемая между двумя точками тела, называют отведением.

Различают I отведение (правая рука — левая рука), II отведение (правая рука — левая нога) и III отведение (левая рука — левая но­га), соответствующие разностям потенциалов Ui Uii и Uiii. По Эйнтховену, сердце расположено в центре треугольника. Отведения по­зволяют определить по формуле соотношение между проек­циями электрического момента сердца на стороны треугольника.

Рис.6

Так как электрический момент диполя — сердца — изменяется со временем, то в отведениях будут получены временные зависимос­ти напряжения, которые и называют электрокардиограммами.

На рис. 7 показана нормальная электрокардиограмма че­ловека в одном из отведений.

Рис.7

Электрокардиограмма не дает представления о пространствен­ной ориентации вектора рс. Однако для диагностических целей такая информация важна. В связи с этим применяют метод про­странственного исследования электрического поля сердца, назы­ваемый вектор-кардиографией.

Вектор-кардиограммагеометрическое место точек, со­ответствующих концу вектора рс, положение которого изме­няется за время сердечного цикла.

Проекция вектор-кардиограммы на плоскость, например на фронтальную, может быть практически получена сложением на­пряжений двух взаимно перпендикулярных отведений. На рис. 8 показано такое сложение с использованием электронного осциллографа, на экране которого наблюдается кривая В. По фор­ме этой кривой делают диагностические выводы.

 

 

Рис. 8

 

<== предыдущая лекция | следующая лекция ==>
Напряженность и потенциал | Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
Поделиться с друзьями:


Дата добавления: 2013-12-13; Просмотров: 870; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.