Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Числові рівності та нерівності, їх властивості

Означення: вираз, який не містить змінних, тобто складається тільки з цифр, знаків операцій і можливо дужок, називається числовим виразом.

Наприклад: “7”, (2+8)●7-5.

Всякий числовий вираз пов’язаний з деяким число, яке ми одержимо, якщо виконаємо відповідні дії над числами. Це число називається значенням числового виразу. Так, наприклад значенням виразу “3” є число 3, а значенням числового виразу (8-3)●3 є число 15. Зазначимо, що існують числові вирази, які у певній числовій множині не мають числового значення. Наприклад, вираз (5-3):3 у множні натуральних чисел немає числового значення, але в множині раціональних чисел його числовим значенням є число ⅔. Щоб знайти числове значення виразу, пропонуємо самостійно виконати наступну вправу.

Вправа: знайти числове значення виразу 27:(72-72). Що можна сказати про числове значення цього виразу?

 

2. Візьмемо два числових вирази і сполучимо їх знаком рівності. Ми одержимо деяке висловлення, яке називається числовою рівністю. Рівність, як і всяке висловлення, може бути істинною чи хибною. Наприклад, рівність 24:2=48-36 – істинне висловлення, а рівність 24+7=42+5 – хибне. Таким чином, якщо сполучити знаком рівності рівні числові вирази, то одержимо істинну числову рівність; якщо ж сполучити знаком рівності два числових вирази, значення яких різні, то одержимо хибну числову рівність.

Із шкільного курсу математики відомі такі властивості істинних числових рівностей:

Властивість 1: якщо а=b – істинна числова рівність, а с – будь-яке дійсне число, то а+с=b+с – також істинна числова рівність.

Цю властивість інколи формулюють і так: якщо до обох частин істинної числової рівності додати одне і те ж саме дійсне число, то знову одержимо істинну рівність. Наприклад, оскільки 12-5=28:4 істинна числова рівність, то і 12-5+47=28:4+47 також істинна рівність. Ця властивість дозволяє переносити числа із однієї частини рівності в іншу, змінюючи при цьому знак числа на протилежний.

Властивість 2: якщо а=b – істинна числова рівність і с – будь-яке дійсне число, відмінне від нуля, то ас=bc – також істинна числова рівність.

Цю властивість інколи формулюють і так: якщо обидві частини істинної числової рівності помножити на одне й теж саме, відмінне від нуля дійсне число, то одержимо істинну числову рівність. Наприклад, оскільки рівність 12-5=28:4 – істинна числова рівність, то і (12-5)●49=28:4●49 – істинна числова рівність.

Оскільки числові рівності є висловленнями, то над ними можна виконувати операції кон’юнкції, диз’юнкції, імплікації, заперечення, еквіваленції. Наприклад: висловлення “3+4=7Ù14:2=7” є кон’юнкцією висловлень, а запереченням висловлення а=b є висловлення а≠b. У початкових класах істинні числові рівності називають правильними, а хибні – неправильними. Ці поняття допомагають учням не тільки удосконалювати обчислювальні навички, але також і глибше вивчати теоретичний матеріал. Це відбувається в процесі виконання вправ такого виду:

а) розстав дужки, щоб рівності були правильними: 15-6●2=18;

б) замість зірочок поставити знак дії так, щоб одержати правильні рівності: 4*2=2; 5*4=20;

в) перевірити розв’язання таких прикладів: 88:8=11, 96:6=13.

Якщо сполучити одним із знаків >, <, ≥, ≤ два числових вирази, то одержимо висловлення, яке називається числовою нерівністю. Наприклад: 27-4>4:3, 32-6<3:2, 26≥37-3, 24+7≤11 тощо. Оскільки числові нерівності є висловленнями, то вони можуть бути як істинними, так і хибними. Нерівності а>b і с>d (чи а<b і с<d, чи а≥b і с≥d, чи а≤b і с≤d) – називають нерівностями однакового смислу, а нерівності а>b і с<d (чи а<b і с>d, чи а≥b і с≤d, чи а≤b і с≥d) – нерівностями протилежного смислу. Нерівності а<b і с>d називаються строгими нерівностями, а нерівності а≤b і с≥d – нестрогими.

У математиці є й інший підхід до визначення поняття нерівності. Враховуючи той факт, що для двох дійсних чисел існує одне і тільки одне із трьох співвідношень а>b, а=b, а<b, говорять: 1) якщо різниця чисел а-b додатна, то вважають, що а>b; 2) якщо різниці чисел а-b дорівнює нулю, то вважають, що а=b; 3) якщо різниця чисел а-b від’ємна, то вважають, що а<b.

Розглянемо основні властивості числових нерівностей:

Властивість 1: для будь-яких а і b, якщо а>b, то b<а.

Доведення:

За умовою а>b, а тому різниця а-b – додатна. Помноживши її на -1, одержимо від’ємне число –(а-b)=b-а. Це означає, що b<а. Властивість доведено.

Властивість 2: для будь-яких а, b, с, якщо ((а>b)Ù(b>c))→(а>с).

Доведення:

Оскільки а>b і b>c, то різниці а-b і b-c будуть додатними. Тоді сума двох додатних чисел (а-b)+(b-c) також буде додатною. Отже, маємо (а-b)+(b-c)=а-с. Це число додатне, а тому а>c. Властивість доведено.

Властивість 3: для будь-якого а нерівності а>а і а<а завжди хибні.

Доведення:

Припустимо, що висловлення а>а – істинне, а тому різниця а-а - додатна. Тоді на основі властивості 1 маємо а<а, тобто а-а<0. Але ж за припущенням а-а>0, а це суперечить теоремі про єдиність різниці.

Властивість 4: для будь-яких а, b, c якщо a>b, то а+с>b+с.

Доведення:

За умовою а>b, тобто а-b>0. Додамо і віднімемо в лівій частині число с, тоді матимемо (а+с)-(b+с)>0. Отже, а+с>b+c. Властивість доведено.

Властивість 5: для будь-яких а, b, c якщо a>b і c>0, то ас>bc, а при c<0, ас<bc.

Доведення:

За умовою a>b, а тоді а-b>0. Отже, при с>0 (a-b)c>0 або ac-bc>0, тобто ac>bc.

Властивість 6: нерівності однакового смислу можна почленно додавати, залишивши спільний знак нерівності.

Доведення:

Нехай дано дві нерівності однакового смислу, тобто a>b і c>d. За умовою a>b, а тому на основі властивості 4 маємо a+с>b+с. Аналогічно з нерівності c>d маємо b+c>b+d. Тоді на оcнові властивості 6 із a+с>b+с і b+c>b+d маємо a+с> b+d. Властивість доведено.

Властивість 7: нерівності протилежного смислу можна почленно віднімати, поставивши знак тієї нерівності, від якої віднімали.

Властивість 8: нерівності однакового смислу з додатними членами можна почленно перемножати, поставивши спільний знак нерівності.

Пропонуємо студентам довести самостійно властивості №№ 7, 8 числових нерівностей. Властивості №№ 1-5 були сформульовані і доведені для нерівностей із знаком “>”. Однак і для нерівностей із знаками “<”, „≥”, „≤” можна сформулювати та довести такі ж самі властивості.

 

<== предыдущая лекция | следующая лекция ==>
Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу | Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей
Поделиться с друзьями:


Дата добавления: 2013-12-14; Просмотров: 15128; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.