КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Структура материалов
Краткие выводы по вопросу состава строительных материалов 1.6.1 Вещественный (элементный) и химический составы материалов определяют многие параметры системы: химический потенциал, энергетическое состояние, термодинамику состояния (перехода) и, следовательно тип и энергию химических связей. 1.6.2 Минералогический состав предопределяет внутреннее строение, микроструктуру материала, а также его физико-химические и термические показатели. 1.6.3 Фазовый состав свидетельствует о гомогенности или гетерогенности системы, определяет взаимосвязь между элементами структуры и предопределяет упругодеформативные и термомеханические свойства материалов. 1.6.4 Гранулометрический и фракционный составы определяют макроструктуру материалов и взаимодействие его с окружающей средой и, как следствие, прочностные, тепло- и гидрофизические свойства материалов.
Термин "структура" трактуется очень широко. Структура, по мнению физика, это особенность строения кристаллической решетки тела, химика – результат взаимодействия молекул, атомов и т.п., биолога - особенность строения клетки и т.д. В строительном материаловедении под термином " структура " подразумевают взаиморасположение элементов, составляющих тот или иной материал. Например, по структуре керамические изделия подразделяют на изделия грубой и тонкой керамики, бетоны с плавающей и контактной структурой, крупнозернистые, мелкозернистые и ячеистые и т.д. Структура (строение, расположение, порядок) – совокупность устойчивых связей тела (объекта), обеспечивающих его целостность. Структуру строительного материала изучают на трех уровнях: макро уровне - макроструктура – строение материала видимое невооруженным глазом; микро уровне - микроструктура – строение материала, видимое через микроскоп; внутренняя структура строение вещества, изучаемое на молекулярно-ионном уровне (физико-химические методы исследования – электронный микроскоп, термогравиметрия, рентгеноструктурный анализ и т.д). 2.1 Макроструктура – это видимая невооруженным глазом или при небольшом увеличении внутренняя или поверхностная часть материала. Макроструктура в целом характеризуется фазовым составом, т.е. наличием элементов структуры в виде твердого тела, жидкости и газовой среды. При визуальном осмотре изделия выявляют зоны и участки, различающиеся пористостью, окраской, зерновым составом и другими особенностями, а также различные дефекты структуры в виде трещин, каверн и пр. Макроструктуру строительных материалов делят на несколько групп: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, и рыхлозернистая (порошкообразная). Конгломератная структура - соединение разнородных веществ, обычно в виде зерен, кусков различных форм и размеров, например, конгломератную структуру имеют тяжелые бетоны. Ячеистая структура свойственна газо-, пенобетонам, пеностеклу, пемзе. Ячеистая структура характеризуется наличием макропор, у мелкопористых большинство ячеек размером менее 1 мм, например у керамических материалов. Волокнистая структура присуща природным (древесина) или искусственным (минеральная вата) материалам с расположением волокон в одном направлении или хаотично. Показатели свойств таких материалов заметно отличаются при физических воздействиях вдоль или поперек волокон. Слоистая структура предполагает наличие в материале нескольких, в том числе и разнородных слоев, характерна для листовых материалов, плитных, рулонных гидроизоляционных и др. Рыхлозернистую структуру имеют сыпучие порошкообразные материалы, состоящие из большого количества несвязанных зерен или мелких частиц, например щебень (гравий), песок - заполнители для бетонов и растворов, материалы для тепло- звукоизоляционной засыпки. В процессе структурообразования в определенный промежуток времени, как правило, имеют место только две фазы: жидкая (расплав или раствор) и твердая (кристалл или стекло). При стабилизации структуры возможно наличие третьей (газовой фазы). 2.2 Микроструктура – строение вещества, материала различимое с помощью оптических приборов (под микроскопом). Классически выделяют три типа микроструктур: кристаллическую, аморфную, смешанную. Кристаллическая структура – упорядоченная, наиболее устойчивая форма агрегатного состояния вещества. Кристаллическая структура формируется из термодинамически неустойчивых диспергированных систем, обладающих огромным запасом свободной энергии. Кристаллизация, как правило, самопроизвольный процесс с выделением тепла (энергии). Образующиеся кристаллы определяют физические, механические, термические, электрические, оптические и другие свойства структуры. Схема изменения состояния тела на рис 1. Переход кристаллического тела в аморфное состояние связан с сообщением механической, химической или тепловой энергии. Аморфная структура – промежуточное состояние между двумя периодами существования кристаллической структуры: до полной кристаллизации (левая часть схемы) и в стадии активного распада (правая часть схемы).
Кристаллическое состояние твердого тела (устойчивое)
Стеклообразное Жидкость, расплавы, состояние (малоустойчивое) Стеклообразное (неустойчивое состояние)
Рис.1 Схема изменения состояния (структуры) тела
Смешанная аморфно-кристаллическая структура, точнее стеклокристаллическая – сложная структура. Соотношение между кристаллической и аморфной фазами оказывает огромное влияние на свойства материала. Схема образования аморфно-кристаллической структуры на рис. 2. Вершины треугольника символизируют структуры (состояние вещества или материала): вершина "А" – кристаллическая структура, "В" – аморфная структура, "С" – стеклообразное состояние твердых тел.
Кристаллическая структура (устойчивая) А
Стеклокристаллическая структура Стеклокристаллическая структура (ситалловая) образованная из стекла образованная из кристаллов
Аморфно-кристал лическая структура
Конденсация Диспергация (созидательный процесс) (разрушительный процесс)
Аморфная структура (неустойчивая)
Рис. 2 Схема образования аморфно-кристаллической структуры
Зона, расположенная выше линии, проходящей через точку "А", предполагает наличие в ней элементов ярко выраженной кристаллической или поликристаллической структуры. Ярко выраженную кристаллическую структуру имеют минералы образующие горные породы, такие горные породы, как гранит, диорит и др., клинкерные минералы цемента. Зона ниже линии "СВ" – включает природные и искусственные материалы и соединения, имеющие аморфную структуру: вулканическое стекло, стекло и изделия из него, сажа, аморфный кремнезем. Между двумя горизонтальными линиями расположена зона элементов смешанной аморфно-кристаллической структуры. Большинство строительных материалов имеют именно эту структуру: строительная керамика, бетоны, растворы и др. Классификация материалов по структуре представлена в табл. 4. 2.3 Внутреннее строение вещества определяет его механическую прочность, твердость, теплопроводность и др. свойства, зависит от его агрегатного состояния и устойчивости и может иметь строго упорядоченное строение (т.е. кристаллическую решетку) или беспорядочное (хаотическое расположение молекул и атомов). Природа частиц, находящихся в узлах кристаллической решетки, и химические связи определяют тип кристаллической решетки: атомный, молекулярный, ионный, металлический. Вещества с атомными решетками характеризуются высокой твердостью и тугоплавкостью, они практически не растворимы ни в каких растворителях. Таких веществ сравнительно мало, например алмаз, кремний. Молекулярную решетку имеют почти все вещества неметаллы, кроме углерода и кремния, они имеют невысокую твердость, легкоплавкие, летучие. К соединениям с ионной кристаллической решеткой относят большинство солей и некоторые оксиды. По прочности ионные решетки уступают атомным решеткам, но превосходят молекулярные, и имеют высокие температуры плавления. Металлы отличаются от других соединений атомов наличием свободных электронов, отсюда высокие электро- и теплопроводность. Решетки разных веществ отличаются друг от друга природой образующих их частиц и расположением частиц в пространстве, образуя элементарные ячейки, которые придают веществу только ему свойственные особенности.
Дата добавления: 2013-12-13; Просмотров: 4899; Нарушение авторских прав?; Мы поможем в написании вашей работы! |