Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Природа ферромагнетизма

Описательная теория ферромагнетизма была предложена французским физиком П. Вейссом в 1907 году, а последовательная количественная теория на основе квантовой механики разработана советским физиком Я. Френкелем и немецким физиком В. Гейзенбергом (1928 год).

Согласно современным представлениям, магнитные свойства ферромагнетиков определяются спиновыми магнитными моментами (спинами) электронов; ферромагнетиками могут быть только кристаллические вещества, в атомах которых имеются недостроенные внутренние электронные оболочки с нескомпенсированными спинами. При этом возникают силы, вынуждающие спиновые магнитные моменты электронов ориентироваться параллельно друг другу. Эти силы называются силами обменного взаимодействия, они имеют квантовую природу и обусловлены волновыми свойствами электронов.

Под действием этих сил в отсутствии внешнего поля ферромагнетик разбивается на большое число микроскопических областей - доменов, размеры которых порядка 10-2 - 10-4cм. Внутри каждого домена спины электронов сориентированы параллельно друг другу, так что весь домен намагничен до насыщения, но направления намагничивания в отдельных доменах различны, так что полный (суммарный) магнитный момент всего ферромагнетика равен нулю. Как известно, любая система стремится находиться в состоянии, при котором ее энергия минимальна. Разбиение ферромагнетика на домены происходит потому, что при образовании доменной структуры энергия ферромагнетика уменьшается. Точка Кюри оказывается той температурой, при которой происходит разрушение доменов, и ферромагнетик утрачивает свои ферромагнитные свойства.

Существование доменной структуры ферромагнетиков доказано экспериментально. Прямым экспериментальным методом их наблюдения является метод порошковых фигур. Если на тщательно отполированную поверхность ферромагнетика нанести водную суспензию мелкого ферромагнитного порошка (например, магнетика), то частицы оседают преимущественно в местах максимальной неоднородности магнитного поля, т.е. на границах между доменами. Поэтому осевший порошок очерчивает границы доменов, и подобную картину можно сфотографировать под микроскопом.

Одной из основных задач теории ферромагнетизма является объяснение зависимости В(Н) (рис.6). Попробуем сделать это. Мы знаем, что в отсутствии внешнего поля ферромагнетик разбивается на домены, так что его полный магнитный момент равен нулю. Это схематически показано на рис.6, а, где изображены четыре домена одинакового объема, намагниченные до насыщения. При включении внешнего поля энергии отдельных доменов делаются неодинаковыми: энергия меньше для тех доменов, в которых вектор намагничения образует с направлением поля острый угол, и больше в том случае, если этот угол тупой.

 
 

- намагниченность всего магнетика в состоянии насыщения.
Рис. 6

 

Рис. 9
Поскольку, как известно, всякая система стремится к минимуму энергии, возникает процесс смещения границ доменов, при котором объем доменов с меньшей энергией возрастает, а с большей энергией уменьшается (рис.6, б). В случае очень слабых полей эти смещения границ обратимы и точно следуют за изменениями поля (если поле выключить, намагниченность снова будет равна нулю). Этот процесс соответствует участку кривой В(Н) (рис.7). При увеличении поля смещения границ доменов делаются необратимыми.

При достаточной величине намагничивающего поля энергетически невыгодные домены исчезают (рис.6, в; участок рис.7). Если поле увеличивается еще больше, происходит доворачивание магнитных моментов доменов по полю, так что весь образец превращается в один большой домен (рис.6, г; участок рис.7).

Многочисленные интересные и ценные свойства ферромагнетиков позволяют широко использовать их в различных областях науки и техники: для изготовления сердечников трансформаторов и электро-механических излучателей ультразвука, в качестве постоянных магнитов и т.п. Ферромагнитные материалы находят применения в военном деле: в различных электро- и радиоустройствах; как источники ультразвука - в гидролокации, навигации, звукоподводной связи; как постоянные магниты - при создании магнитных мин и для магнитометрической разведки. Магнитометрическая разведка позволяет обнаруживать и опознавать объекты, содержащие ферромагнитные материалы; используется в системе борьбы с подводными лодками и морскими минами.

 

<== предыдущая лекция | следующая лекция ==>
Свойства ферромагнетиков | Антиферромагнетики и ферриты
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1407; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.