Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правило Вант- Гоффа. Уравнение Аррениуса




Согласно эмпирическому правилу Вант - Гоффа, сформулированному около 1880г., скорость большинства реакций увеличивается в 2-4 раза при повышении температуры на 10 градусов, если реакция проводится при температуре, близкой к комнатной. Например, время полуразложения газообразного оксида азота (V) при 35°С составляет около 85мин., при 45°С-около 22мин. и при 55°С - около 8мин.

Мы уже знаем, что при любой постоянной температуре скорость реакции описывается эмпирическим кинетическим уравнением, представляющим в большинстве случаев (за исключением реакции с весьма сложным механизмом) произведение константы скорости на концентрации реагентов в степенях, равных порядкам реакции. Концентрации реагентов практически не зависят от температуры, порядки, как показывает опыт,- тоже. Следовательно, за резкую зависимость скорости реакции от температуры ответственны константы скоростей. Зависимость константы скорости от температуры принято характеризовать температурным коэффициентом скорости реакции, которыйпредставляет собой отношение констант скорости при температурах, отличающихся на 10 градусов

; ; =; =

=

и который по правилу Вант - Гоффа равен приблизительно 2-4.

 

Попытаемся объяснить наблюдаемые высокие значения температурных коэффициентов скоростей реакции на примере гомогенной реакции в газовой фазе с позиций молекулярно-кинетической теории газов. Чтобы молекулы взаимодействующих газов прореагировали друг с другом, необходимо их столкновение, при котором одни связи рвутся, а другие образуются, в результате чего и появляется новая молекула - молекула продукта реакции. Следовательно, скорость реакции зависит от числа столкновений молекул реагентов, а число столкновений, в частности, - от скорости хаотического теплового движения молекул. Скорость молекул и соответственно число столкновений растут с температурой. Однако только повышение скорости молекул не объясняет столь быстрого роста скоростей реакций с температурой. Действительно, согласно молекулярно-кинетической теории газов средняя скорость молекул пропорциональна квадратному корню из абсолютной температуры, т.е, при повышении температуры системы на 10 градусов, скажем, от 300 до 310К, средняя скорость молекул возрастет лишь в 310/300 = 1,02 раза - гораздо меньше, чем требует правило Вант -Гоффа.

Таким образом, одним только увеличением числа столкновений нельзя объяснить зависимость констант скоростей реакции от температуры. Очевидно, здесь действует еще какой-то важный фактор. Чтобы вскрыть его, обратимся к более подробному анализу поведения большого числа частиц при различных температурах. До сих пор мы говорили о средней скорости теплового движения молекул и ее изменении с температурой, но если число частиц в системе велико, то по законам статистики отдельные частицы могут иметь скорость и соответственно киетическую энергию, в большей или меньшей степени отклоняющуюся от среднего значения для данной температуры. Эта ситуация изображена на рис. (3.2), который

показывает, как распределены части-


 

3.2. Распределение частиц по кинетической энергии при различных температурах:

2-Т2; 3-Т3; Ti<T2<T3; Ei - наиболее вероятная энергия при температуре Ti

цы по кинетической энергии при определенной температуре. Рассмотрим, например, кривую 1, отвечающую температуре Ti. Общее число частиц в системе (обозначим его N0) равно площади под кривой. Максимальное число частиц, равное Ni, обладает наиболее вероятной для данной температуры кинетической энергией Е1. Более высокую энергию будут иметь частицы, число которых равно площади под кривой справа от вертикали Е1, а площадь слева от вертикали отвечает частицам с энергией меньше Е



Чем больше кинетическая энергия отличается от средней, тем меньше частиц обладают ею. Выберем, например, некоторую энергию Еа, большую чем Е1}. При температуре Ti число частиц, энергия которых превышает величину Еа, составляет лишь малую часть от общего числа частиц - это зачерненная площадь под кривой 1 справа от вертикали Еа. Однако при более высокой температуре Т2 уже больше частиц обладает энергией, превышающей Еа (кривая 2), а при дальнейшем повышении температуры до Т3 (кривая 3) энергия Еа оказывается близкой к средней, и такой запас кинетической энергии будет иметь уже около половины всех молекул.

Скорость реакции определяется не общим числом столкновений молекул в единицу времени, а той его частью, в которой принимают участие молекулы, кинетическая энергия которых превышает некоторый предел Еа, называемый энергией активации реакции. Это становится вполне понятным, если мы вспомним, что для успешного протекания элементарного акта реакции необходимо, чтобы при столкновении произошел разрыв старых связей и были бы созданы условия для образования новых. Конечно, на это требуется затратить энергию – нужно, чтобы сталкивающиеся частицы обладали достаточным ее запасом.

Шведский ученый С.Аррениус установил, что возрастание скорости большинства реакций при повышении температуры происходит нелинейно (в отличие от правила Вант - Гоффа). Аррениус установил, что в большинстве случаев константа скорости реакции подчиняется уравнению

LgK=lgA -, (3.14)

которое получило название уравнения Аррениуса.

Еа - энергия активации (см. ниже)

R - молярная газовая постоянная, равная 8,314 Дж/моль۰К,

Т - абсолютная температура

А - постоянная или очень мало зависящая от температуры величина. Ее называют частотным фактором, так как она связана с частотой молекулярных столкновений и вероятностью того, что столкновение происходит при ориентации молекул, благоприятной для реакции. Как видно из (3.14) при увеличении энергии активации Еа константа скорости К уменьшается. Следовательно, скорость реакции уменьшается при повышении ее энергетического барьера (см. ниже).

Иногда бывает удобно преобразовать уравнение (3.14) так, чтобы оно отражало взаимосвязь между значениями скорости при двух температурах –

T1 и T2,

ПриТ1 lgK1=lgA -

При Т2 lgK2=lgA -

Вычитая второе равенство из первого, получим:

lgK1-lgK2=(lgA -) - (lgA -)

После упрощения этого уравнения получим:

lg = (-) (3.15)

Это уравнение дает удобный способ вычисления константы скорости при некоторой температуре Т1 если известны энергия активации и константа скорости К2 при какой-либо другой температуре Т2.

Для реакций, протекающих с участием катализатора:

lg =

где Еа- энергия активации химической реакции без катализатора,

Еа/ - энергия активации химической реакции с участием катализатора.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1075; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.