Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Идея метода конечных элементов (МКЭ)

 

Исторически возникновение МКЭ связано с идеей применения хорошо разработанных процедур для расчета статически неопределимых стержневых систем к решению континуальных задач.

Первоначально эта идея была высказана еще в 1933 году И.М. Рабиновичем, но развитие получила только в 70-х годах, с появлением ЭВМ.

Метод конечных элементов основан на мысленном представлении сплошного тела в виде совокупности отдельных конечных элементов, взаимодействующих между собой в конечном числе точек, которые в МКЭ принято называть узлами.

Система разбивается на простые конечные элементы (КЭ) напряженно-деформированное состояние которых исследуется заранее.

Так стержневые системы могут быть разбиты на элементы в виде прямолинейных или криволинейных стержней (например, для расчета арок) с различными условиями соединения элементов в узлах. В этом случае дискретная модель является точной копией исходной конструкции (с учетом принятых технических гипотез).

В расчетах пластин наибольшее распространение получили прямоугольные и треугольные конечные элементы. Здесь дискретная модель лишь приближенно отражает поведение исходной конструкции.

Заметим, что даже при одном и том же числе узловых точек различные схемы дискретизации исходной конструкции порождают разницу в окончательных результатах расчета. К сожалению, заранее сказать, какая из возможных схем дискретизации приведет к наименьшей погрешности расчета, невозможно.

 

 
 

Число степеней свободы КЭ, а в конечном итоге число неизвестных МКЭ, определяется количеством наложенных в узлах дополнительных связей.

 
 

Условия равновесия и совместности деформаций выполняются только в узловых точках - точках соединения КЭ. Однако это не значит, что общая жесткость пластины при этом резко уменьшается, поскольку зависимость между узловыми усилиями и деформациями каждого элемента рассматривается с учетом некоторых внутренних связей.

Каждый элемент является частью заменяемой среды, т.е. сплошное тело лишь условно делится на отдельные элементы конечных размеров. Выделенный элемент имеет те же физические свойства и геометрические характеристики, что и рассматриваемая конструкция в месте расположения элемента.

Все внешние силы считаются приложенными в узлах, по направлению их возможных перемещений. Вне узловые нагрузки предварительно приводятся к узловым.

При реализации МКЭ наибольшее распространение получили идеи метода перемещений, хотя имеются работы, где рассматривается метод сил и смешанный метод. Предпочтение методу перемещений отдано в основном из-за простоты выбора основной системы, составления матрицы жесткости и формирования вектора внешних нагрузок.

Разрешающее уравнение МКЭ, которое представляет собой матричную форму канонических уравнений метода перемещений, имеет вид:

 

[r]{Z}={P},

где: [r] - матрица жесткости сооружения в целом,

{Z}- вектор перемещений узловых точек сооружения,

{P}- вектор внешних нагрузок.

 

Подход к решению задачи МКЭ является единым, как для стержневых систем, так и для пластин, оболочек и объемных тел.

Дальнейшее рассмотрение МКЭ будем проводить на примере плоских стержневых систем.

 

<== предыдущая лекция | следующая лекция ==>
Введение. Порядок расчета стержневых систем методом конечных элементов | Метод конечных элементов в расчетах плоских стержневых систем
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 536; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.