Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Внутрішня пам’ять

Шини

З іншими пристроями, і в першу чергу з оперативною пам’яттю, процесор зв’язаний групами провідників, які називаються шинами. Основних шин три:

Ø шина даних,

Ø адресна шина,

Ø командна шина.

Адресна шина. Дані, що передаються по цій шині трактуються як адреси комірок оперативної пам’яті. Саме з цієї шини процесор зчитує адреси команд, які необхідно виконати, а також дані, із якими оперують команди. У сучасних процесорах адресна шина 32-розрядна, тобто вона складається з 32 паралельних провідників.

Шина даних. По цій шині відбувається копіювання даних з оперативної пам’яті в регістри процесора і навпаки. У ПК на базі процесорів Intel Pentium шина даних 64-розрядна. Це означає, що за один такт на обробку поступає відразу 8 байт даних.

Командна шина. По цій шині з оперативної пам’яті поступають команди, які виконуються процесором. Команди представлені у вигляді байтів. Прості команди вкладаються в один байт, але є й такі команди, для яких потрібно два, три і більше байтів. Більшість сучасних процесорів мають 32-розрядну командну шину, хоча існують 64-розрядні процесори з командною шиною.

Шини на материнській платі використовуються не тільки для зв’язку з процесором. Усі інші внутрішні пристрої материнської плати, а також пристрої, що підключаються до неї, взаємодіють між собою за допомогою шин. Від архітектури цих елементів багато в чому залежить продуктивність ПК у цілому.

Розглянемо коротко основні шинні інтерфейси материнських плат.

ISA (Industry Standard Architecture). Дозволяє зв’язати між собою всі пристрої системного блоку, а також забезпечує просте підключення нових пристроїв через стандартні слоти. Пропускна здатність складає до 5,5 Мбайт/с. У сучасних комп’ютерах може використовуватися лише для під’єднання зовнішніх пристроїв, що не вимагають більшої пропускної здатності (звукові карти, модеми і т.д.).

EISA (Extended ISA). Розширення стандарту ISA. Пропускна здатність зросла до 32 Мбайт/с. Як і стандарт ISA, цей стандарт вважається таким, що вичерпав свої можливості (у майбутньому випуск плат, що підтримують ці інтерфейси припиниться).

VLB (VESA Local Bus). Інтерфейс локальної шини стандарту VESA. Локальна шина з’єднує процесор з оперативною пам’яттю в обхід основної шини. Вона працює на більшій частоті, ніж основна шина, що дозволяє збільшити швидкість передавання даних. Пізніше в локальну шину "врізали" інтерфейс для підключення відеоадаптера, який також вимагає підвищеної пропускної здатності, що і призвело до появи стандарту VLB. Пропускна здатність - до 130 Мбайт/с, робоча тактова частота - 50 МГц (але вона залежить від кількості пристроїв, під’єднаних до шини, що є головним недоліком інтерфейсу VLB).

PCI (Peripherial Component Interconnect). Стандарт підключення зовнішніх пристроїв, введений в ПК на базі процесора Pentium. За своєю суттю, це також інтерфейс локальної шини з роз’ємами для під’єднання зовнішніх компонентів. Даний інтерфейс підтримує частоту шини до 66 МГц і забезпечує швидкодію до 264 Мбайт/с незалежно від кількості під’єднаних пристроїв. Важливим нововведенням цього стандарту була підтримка механізму plug-and-play, суть якого полягає в тому, що після фізичного підключення зовнішнього пристрою до роз’єму шини PCI відбувається автоматичне конфігурування цього пристрою.

FSB (Front Side Bus). Починаючи з процесора Pentium Pro для зв’язку з оперативною пам’яттю використовується спеціальна шина FSB. Ця шина працює на частоті 100-133 МГц і має пропускну здатність до 800 Мбайт/с. Частота шини FSB є основним параметром, саме вона вказується в специфікації материнської плати. За шиною PCI залишилася лише функція підключення нових зовнішніх пристроїв.

AGP (Advanced Graphic Port). Спеціальний шинний інтерфейс для підключення відеоадаптерів. Розроблений у зв’язку з тим, що параметри шини PCI не відповідають вимогам відеоадаптерів на швидкодію. Частота цієї шини - 33 або 66 МГц, пропускна здатність до 1066 Мбайт/с.

USB (Universal Serial Bus). Стандарт універсальної послідовної шини визначає новий спосіб взаємодії комп’ютера з периферійним обладнанням. Він дозволяє підключати до 256 різних пристроїв із послідовним інтерфейсом, причому пристрої можуть під’єднуватися ланцюжком. Продуктивність шини USB відносно невелика і складає 1,55 Мбіт/с. Серед переваг цього стандарту слід відзначити можливість підключати і відключати пристрої в "гарячому режимі" (тобто без перезавантаження комп’ютера), а також можливість об’єднання декількох комп’ютерів у просту мережу без використання спеціального апаратного та програмного забезпе-чення.

Під внутрішньою пам’яттю розуміють всі види запам’ятовуючих пристроїв, що розташовані на материнській платі. До них відносяться:

Ø оперативна пам’ять,

Ø постійна пам’ять,

Ø енергонезалежна пам’ять.

Оперативна пам’ять RAM (Random Access Memory).

Пам’ять RAM - це масив кристалічних комірок, що здатні зберігати дані. Вона використовується для оперативного обміну інформацією (командами та даними) між процесором, зовнішньою пам’яттю та периферійними системами. З неї процесор бере програми та дані для обробки, до неї записуються отримані результати. Назва "оперативна" походить від того, що вона працює дуже швидко і процесору не потрібно чекати при зчитуванні даних з пам’яті або запису. Однак, дані зберігаються лише тимчасово при включеному комп’ютері, інакше вони зникають.

За фізичним принципом дії розрізняють динамічну пам’ять DRAM і статичну пам’ять SRAM. Комірки динамічної пам’яті можна представити у вигляді мікроконденсаторів, здатних накопичувати електричний заряд. Недоліки пам’яті DRAM: повільніше відбувається запис і читання даних, потребує постійної підзарядки. Переваги: простота реалізації і низька вартість. Комірки статичної пам’яті можна представити як електронні мікроелементи - тригери, що складаються з транзисторів. У тригері зберігається не заряд, а стан (включений/виключений). Переваги пам’яті SRAM: значно більша швидкодія. Недоліки: технологічно складніший процес виготовлення, і відповідно, більша вартість. Мікросхеми динамічної пам’яті використовуються як основна оперативна пам’ять, а мікросхеми статичної - для кеш-пам’яті.

Кожна комірка пам’яті має свою адресу, яка виражається числом. В сучасних ПК на базі процесорів Intel Pentuim використовується 32-розрядна адресація. Це означає, що всього незалежних адрес є 232, тобто можливий адресний простір складає 4,3 Гбайт. Однак, це ще не означає, що саме стільки оперативної пам’яті має бути в системі. Граничний розмір обсягу пам’яті визначається чіпсетом материнської плати і зазвичай складає декілька сот мегабайт.

Оперативна пам’ять у комп’ютері розміщена на стандартних панельках, що звуться модулями. Модулі оперативної пам’яті вставляють у відповідні роз’єми на материнській платі. Конструктивно модулі пам’яті мають два виконання - однорядні (SIMM - модулі) та дворядні (DIMM - модулі). На комп’ютерах з процесорами Pentium однорядні модулі можна застосовувати лише парами (кількість роз’ємів для їх встановлення на материнській платі завжди парне). DIMM - модулі можна встановлювати по одному. Комбінувати на одній платі різні модулі не можна. Основними характеристиками модулів оперативної пам’яті є: об’єм пам’яті та час доступу. SIMM- модулі є об’ємом 4, 8, 16, 32 мегабайти; DIMM - модулі - 16, 32, 64, 128, 256 Мбайт. Час доступу показує, скільки часу необхідно для звертання до комірок пам’яті, чим менше, тим краще. Вимірюється у наносекундах. SIMM - модулі - 50-70 нс, DIMM - модулі - 7-10 нс.

Постійна пам’ять ROM (Read Only Memory)

В момент включення комп’ютера в його оперативній пам’яті відсутні будь-які дані, оскільки оперативна пам’ять не може зберігати дані при вимкненому комп’ютері. Але процесору необхідні команди, в тому числі і відразу після включення. Тому процесор звертається за спеціальною стартовою адресою, яка йому завжди відома, за своєю першою командою. Ця адреса вказує на пам’ять, яку прийнято називати постійною пам’яттю ROM або постійним запам’ятовуючим пристроєм (ПЗП). Мікросхема ПЗП здатна тривалий час зберігати інформацію, навіть при вимкненому комп’ютері. Кажуть, що програми, які знаходяться в ПЗП, "зашиті" у ній - вони записуються туди на етапі виготовлення мікросхеми. Комплект програм, що знаходиться в ПЗП утворює базову систему введення/виведення BIOS (Basic Input Output System). Основне призначення цих програм полягає в тому, щоб перевірити склад та працездатність системи та забезпечити взаємодію з клавіатурою, монітором, жорсткими та гнучкими дисками.

Енергонезалежна пам’ять CMOS

Робота таких стандартних пристроїв, як клавіатура, може обслуговуватися програмами BIOS, але такими засобами неможливо забезпечити роботу з усіма можливими пристроями (у зв’язку з їх величезною різноманітністю та наявністю великої кількості різних параметрів). Але для своєї роботи програми BIOS вимагають всю інформацію про поточну конфігурацію системи. З очевидних причин цю інформацію не можна зберігати ні в оперативній пам’яті, ні в постійній.

Спеціально для цих цілей на материнській платі є мікросхема енергонезалежної пам’яті, яка по технології виготовлення називається CMOS. Від оперативної пам’яті вона відрізняється тим, що її вміст не зникає при вимкненні комп’ютера, а від постійної пам’яті вона відрізняється тим, що дані можна заносити туди і змінювати самостійно, у відповідності з тим, яке обладнання входить до складу системи. Мікросхема пам’яті CMOS постійно живиться від невеликої батарейки, що розташована на материнській платі. У цій пам’яті зберігаються дані про гнучкі та жорсткі диски, процесори і т.д. Той факт, що комп’ютер чітко відслідковує дату і час, також пов’язаний з тим, що ця інформація постійно зберігається (і обновлюється) у пам’яті CMOS. Таким чином, програми BIOS зчитують дані про склад комп’ютерної системи з мікросхеми CMOS, після чого вони можуть здійснювати звертання до жорсткого диска та інших пристроїв.


Уже 40 лет процесс разработки транзисторов, являющихся главными компонентами всех компьютерных микросхем, соответствует положениям закона Мура. В течение последних

15 лет корпорация Intel является отраслевым лидером в области создания диэлектриков затворов транзисторов на основе диоксида кремния (SiO2). Ведущие позиции корпорации подтверждаются разработкой семи поколений логических производственных технологий. Однако с уменьшением размеров транзисторов наблюдается увеличение утечки тока. Предотвращение этой утечки является важнейшей задачей для обеспечения надежной и быстрой работы транзисторов и становится все более важным фактором при проектировании микросхем. Корпорация Intel совершила значительный прорыв на пути решения проблем, связанных с питанием микросхем, и внедрила гафний, новый материал с высоким показателем диэлектрической проницаемости k "high-k" (Hi-k), в качестве диэлектрика затвора вместо диоксида кремния. Кроме того, корпорация Intel перешла к использованию новых металлических материалов для замены поликремниевых электродов затворов транзисторов NMOS и PMOS. Эти новые материалы в сочетании с новой производственной технологией позволяют уменьшить утечку мощности на затворе более чем в 100 раз, обеспечивая при этом рекордную производительность транзисторов. Чтобы достичь таких исключительных показателей исследователи полупроводниковых технологий корпорации Intel опробовали более 100 сочетаний различных материалов.

Материалы с высокими показателями диэлектрической проницаемости (High-k)

Чтобы создать транзисторы нового поколения, корпорация Intel разрабатывает новые материалы, демонстрирующие потенциальную возможность замены диэлектриков затворов из диоксида кремния, в которых при уменьшении размеров становится все сложнее предотвратить утечку мощности. Этот класс материалов, называемый high-k, заменит используемые сейчас технологии на основе диоксида кремния и будет использоваться на протяжении нескольких поколений.

Обозначение "High-k" означает высокий показатель диэлектрической проницаемости. При помощи этого показателя измеряется объем заряда, который может сохранить какой-либо материал. Разные материалы имеют различные значения диэлектрической проницаемости. Представьте себе губку, способную впитывать большой объем воды; дерево, которое может впитывать меньший объем, и стекло, которое вообще не может впитывать воду. Эталонным материалом для этого показателя является воздух, для которого значение "k" равняется единице. Материалы класса "High-k", такие как диоксид гафния (HfO2), диоксид циркония (ZrO2) и диоксид титана (TiO2) имеют значение диэлектрической проницаемости выше 3.9, значения для диоксида кремния.

Показатели диэлектрической проницаемости также непосредственно связаны с производительностью транзисторов. Более высокое значение "k" повышает емкость транзистора, чтобы он мог правильно переключаться между состояниями "вкл." и "выкл." (WMV, 9,5 МБ), с очень низкой силой тока в выключенном состоянии и с очень высокой силой тока во включенном состоянии.

Преимущества материалов с высокими показателями диэлектрической проницаемости (High-k)

После многолетних исследований корпорация Intel подобрала подходящий материал high-k и подходящие материалы электродов затворов, позволяющие достичь рекордной производительности транзисторов NMOS и PMOS. Перейдя на новый материал high-k, корпорация Intel смогла сохранить показатели рабочего тока на том же уровне, что и для старых материалов, и, при этом, решить проблему утечки мощности.

Все производители полупроводниковых устройств постоянно сталкиваются с проблемой перегрева микросхем, экспоненциально растущего с увеличением количества транзисторов. Сокращение утечки мощности, благодаря использованию новых материалов high-k, является одним из важнейших шагов для охлаждения транзисторов. Поскольку диэлектрики затворов high-k могут быть в несколько раз толще, они снижают утечку мощности на затворе более чем в 100 раз, в результате чего устройства излучают меньше тепла. Одновременно с этим корпорация Intel спроектировала и продемонстрировала металлические электроды затворов, устанавливаемые поверх диэлектриков и совместимые с диэлектриками high-k.

Корпорация Intel ожидает, что переход на новый материал станет одним из наиболее значительных достижений в области эволюции МОП-транзисторов, где диэлектрики затворов из диоксида кремния использовались с момента их появления в 60-х годах прошлого века. Для нового материала high-k корпорации Intel потребуется новая производственная технология, позволяющая наносить слои толщиной в одну молекулу. Результаты первоначальных исследований уже реализованы в 45-нанометровой производственной технологии, однако корпорация Intel продолжает исследования с целью создания второго поколения материалов high-k.

<== предыдущая лекция | следующая лекция ==>
 | Той хто нам заважає, той нам і допоможе”
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 591; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.