Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод молекулярных орбиталей (ММО)

Современные представления о химической связи

Совокупность химически связанных атомов (молекула, кристалл) состоит из атомных ядер и связанных с ними электронов. Положение атомных ядер экспериментально устанавливается довольно точно. Распределение электронной плотности фиксируется менее точно, поскольку в молекуле каждый из валентных электронов может быть обнаружен в окрестности любого ядра. Тем не менее каждому из этих валентных электронов, как и в атоме, соответствует определенный энергетический уровень, называемый молекулярной орбиталью (МО). При построении молекулярных орбиталей используется метод линейной комбинации атомных орбиталей (ЛКАО), обозначаемый аббревиатурой МО – ЛКАО.

Кроме этого подхода рассмотрим метод валентных связей (МВС), основанный на предположении, что химическая связь осуществляется одной или несколькими электронными парами, локализованными между взаимодействующими атомами.

Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей 1s1 и 1s2 – МО± = C11s1 ± C21s2.

Рисунок 3.6.

Поскольку ядра во взаимодействующих атомах водорода одинаковы, то и вклад атомных орбиталей будет одинаковым, что обеспечивается равенством коэффициентов, с которыми s-орбитали участвуют в линейной комбинации (C1=C2=C). Поскольку должно выполняться требование, что сумма квадратов коэффициентов при АО равна 1, то имеем 2C2=1, откуда

Опуская этот нормировочный множитель, запишем две молекулярные орбитали как сумму и разность АО атомов водорода:

   

Электронная плотность этих двух состояний пропорциональна |MO±|2. Поскольку в молекуле водорода взаимодействие возможно только по оси молекулы, то каждая из MO± может быть переобозначена как σсв = 1s1 + 1s2 и σ* = 1s1 –1s2 и названа соответственно связывающей (σсв) и разрыхляющей (σ*) молекулярными орбиталями (рис. 3.7).

Рисунок 3.7. Распределение электронной плотности в молекуле H2.

Из рис. 3.7 видно, что электронная плотность посередине между ядрами для σсв значительна, а для σ* равна нулю. Отрицательно заряженное электронное облако, сконцентрированное в межъядерном пространстве, притягивает положительно заряженные ядра и соответствует связывающей молекулярной орбитали σсв. А МО с нулевой плотностью в межъядерном пространстве соответствует разрыхляющей орбитали σ*. Состояния σсв и σ* отвечают разным уровням энергии, причем молекулярная орбиталь σсв имеет более низкую энергию по сравнению с исходными АО двух невзаимодействующих атомов водорода 1s1 и 1s2 (рис. 3.8).

Рисунок 3.8. Энергетическая диаграмма атомных и молекулярных уровней водорода.

Переход двух электронов на МО σсв способствует понижению энергии системы; этот энергетический выигрыш равен энергии связи между атомами в молекуле водорода H–H. Даже удаление одного электрона с МО (σсв)2 c образованием (σсв)1 в молекулярном ионе оставляет эту систему более устойчивой, чем отдельно существующие атом H и ион H+.

Рис. 3.9 иллюстрирует изменение энергии МО σсв и σ* в зависимости от межатомного расстояния r12. При большом расстоянии r12 их энергия будет мало отличаться от энергий АО 1s1 и 1s2. При некотором r120 энергия σсв достигнет минимума и будет соответствовать энергии связи Eсв молекулы H–H. При дальнейшем сближении ядер энергии σсв и σ* начинают повышаться, поскольку силы отталкивания начинают преобладать над силами притяжения. В молекуле ядра колеблются вблизи равновесного расстояния r120 соответствующего минимуму энергии Eсв.

Рисунок 3.9. Энергии МО в H2 в зависимости от межъядерного расстояния.

Приведенная на рис. 3.9 энергетическая диаграмма МО справедлива для двухъядерных образований H2+, H2, Hhe, He2+. Распределение валентных электронов по МО записывают электронными формулами: H2+св)', Н2св)2, Нне (ϭсв)2*)' и т.д.

Заселение электронами связывающей МО σсв стабилизирует систему, а заселение разрыхляющих – дестабилизирует ее (табл. 3.1).

Молекулярные параметры
Таблица 3.1. Энергия, длина и порядок связи в молекулах элементов 1 периода.

Согласно методу МО порядок (кратность) связи n определяется полуразностью числа связывающих Nсв и разрыхляющих Nраз электронов:

   

При нулевой кратности связи, как в случае He2, молекула не образуется.

 

<== предыдущая лекция | следующая лекция ==>
Типы химических связей | Метод валентных связей (МВС)
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 349; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.