Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Изоляторы воздушных линий и подстанций

РЕЗЮМЕ

Превышение напряжения на изоляции выше критического значения приводит к пробою изоляции. Значение пробивного напряжения зависит от свойств изоляционного материала, структуры электрического поля в изоляционном промежутке и скорости нарастания пробивного напряжения на промежутке.

Пробой изоляции происходит из-за явлений ударной ионизации, фотоионизации в объеме газа, термической ионизации, эмиссии электронов из катода. В жидкостях особое значение имеют тепловые процессы и наличие примесей, в твердой изоляции при пробое происходят электрические, тепловые и электрохимические процессы.

Пробивное напряжение газового промежутка с однородным и слабонеоднородным электрическим полем зависит от произведения относительной плоскости газа на расстояние между электродами. Эта зависимость характеризуется снижением электрической прочности при увеличении расстояния между электродами при условиях, близких к нормальным и имеет минимум при очень низких давлениях или очень малых расстояниях между электродами.

Разрядный промежуток с электродами типа стержень - плоскость характеризуется существенно меньшей электрической прочностью по сравнению с промежутком с однородным и слабонеоднородным электрическим полем, наличием явления короны и двойным эффектом полярности.

При отрицательном стержне корона начинается при существенно меньшем напряжении, чем при положительном, а пробивное напряжение при положительном стержне меньше, чем при отрицательном.

При быстром подъеме напряжения разрядное напряжение оказывается связанным с предразрядным временем, эта зависимость называется вольт-секундной характеристикой изоляционного промежутка. Вольт-секундная характеристика определяется на стандартных грозовых импульсах.

Напряжение перекрытия проходных изоляторов существенно меньше напряжения перекрытия опорных изоляторов при одинаковой длине пути перекрытия.

 

Контрольные вопросы

1.Дайте определение пробоя и приведите основные величины, его характеризующие.

2.Приведите отличия понятий <пробой диэлектрика> и <пробой изоляции> и отличия их количественных характеристик.

3.Перечислите механизмы пробоя диэлектриков.

4.Сформулируйте закон Пашена. Каковы причины такой зависимости?

5.Почему существует зависимость разрядного напряжения от предразрядного времени?

6.Каковы параметры стандартного грозового импульса?

7.Что такое <вольт-секундная характеристика>?

 

2.1. Основные характеристики изоляторов

Изоляторами называют электротехнические изделия, предназначенные для изолирования разнопотенциальных частей электроустановки, то есть для предотвращения протекания электрического тока между этими частями электроустановки, и для механического крепления токоведущих частей.

По расположению токоведущей части различают опорные, проходные и подвесные изоляторы, назначение которых прямо определяются их названиями. По конструктивному исполнению изоляторы делятся на тарельчатые (изоляционная часть в форме тарелки), стержневые (изоляционная часть в виде стержня или цилиндра) и штыревые (изолятор имеет металлический штырь, несущий основную механическую нагрузку). По месту установки различают линейные изоляторы, используемые для подвески проводов линий электропередачи и контактной сети, и станционные изоляторы, используемые на электростанциях, подстанциях (в том числе и тяговых) и постах секционирования. В последнем плане одни и те же типы изоляторов, например, подвесные тарельчатые, могут быть и линейными, и станционными.

Основными характеристиками изоляторов являются разрядные напряжения, геометрические параметры и механические характеристики, а также номинальное напряжение электроустановки, для которой предназначен изолятор.

К разрядным напряжениям изоляторов относят три напряжения перекрытия и одно пробивное напряжение:

сухоразрядное напряжение U схр - напряжение перекрытия чистого сухого изолятора при напряжении частотой 50 Гц (эффективное значение напряжения);

мокроразрядное напряжение U мкр - напряжение перекрытия чистого изолятора, смоченного дождем, падающим под углом 45о к вертикали, при напряжении частотой 50 Гц (эффективное значение напряжения);

импульсное разрядное напряжение U имп - пятидесятипроцентное напряжение перекрытия стандартными грозовыми импульсами (амплитуда импульса, при которой из десяти поданных на изолятор импульсов пять завершаются перекрытием, а оставшиеся пять не приводят к перекрытию);

пробивное напряжение U пр - напряжение пробоя изоляционного тела изолятора на частоте 50 Гц, редко используемая характеристика, поскольку при пробой вызывает необратимый дефект изолятора и напряжение перекрытия должно быть меньше пробивного напряжения.

У подвесных тарельчатых изоляторов сухоразрядное напряжение в 1,8..2 раза больше мокроразрядного напряжения, у стержневых изоляторов различие меньше, порядка 15..20%. Импульсное разрядное напряжение практически не зависит от увлажнения и загрязнения изолятора и обычно примерно на 20% больше амплитуды сухоразрядного напряжения. Загрязнения на поверхности изолятора сильно снижают мокроразрядное напряжение изолятора.

К геометрическим параметрам относят следующие:

строительная высота H c, то есть габарит, который изолятор занимает в конструкции после его установки; у некоторых изоляторов, например, у тарельчатых подвесных, строительная высота меньше реальной высоты изолятора; наибольший диаметр D изолятора; длина пути утечки по поверхности изолятора l у кратчайшее расстояние между электродами по воздуху l с (сухоразрядное расстояние), от которого зависит сухоразрядное напряжение; мокроразрядное расстояние l м, определяемое в предположении, что часть поверхности изолятора стала проводящей из-за смачивания дождем, падающим под углом 45о к вертикали.

Длина пути утечки изолятора нормируется ГОСТ 9920-75 для различных категорий исполнения и в зависимости от степени загрязненности атмосферы (табл. 2.1).

В табл. 2.2 приведена характеристика степени загрязненности атмосферы по <Правилам устройства и технической эксплуатации контактной сети>.

Таблица 2.1 Нормированные эффективные длины пути утечки внешней изоляции электрооборудования

Категория исполнения изоляции Степень загрязненности атмосферы Удельная эффективная длина пути утечки, см/кВ, не менее, при номинальном напряжении Uном, кВ
6-35 110-750
А 1,2,3 1.7 1.5
Б 3,4,5 2.6 2.25
В 5,6 3.5 3.1

Таблица 2.2 Характеристика участков железных дорог по степени загрязненности атмосферы

Степень загрязненности атмосферы Характеристика железнодорожных участков
III Участки железных дорог со скоростями движения до 120 км/ч при отсутствии характеристик, указанных для IV VII СЗА
IV Вблизи (до 500 м) мест добычи, постоянной погрузки и выгрузки угля; производства цинка, алюминия; ТЭС, работающих на сланцах и углях с зольностью свыше 30 %. С перевозками в открытом виде угля, сланца, песка, щебня организован-ными маршрутами. Со скоростями движения поездов 120-160 км/ч. Проходящие по местности с сильнозасоленными и дефлирующими поч-вами или вблизи (до 1 км) морей и соляных озер со среднезасоленной водой (10-20 г/л) или далее 1 км (до 5 км) с сильнозасоленной водой (20-40 г/л).
V Вблизи (до 500 м) мест производства, постоянной погрузки и выгрузки цемента. Со скоростями движения поездов более 160 км/ч. Проходящие по местности с очень засоленными и дефлирующими поч-вами или вблизи (до 1 км) морей и соленых озер с сильнозасоленной водой (20-40 г/л). В тоннелях со смешанной ездой на тепловозах и электровозах.
VI Вблизи (до 500 м) мест расположения предприятий нефтехимической промышленности, постоянной погрузки, выгрузки ее продукции. Места постоянной стоянки и остановки работающих тепловозов. В промышленных центрах с интенсивным выделением смога.
VII Вблизи (до 500 м) мест расположения градирен, предприятий химичес-кой промышленности и по производству редких металлов, постоянной погрузки и выгрузки минеральных удобрений и продуктов химической промышленности.

Основными механическими характеристиками изоляторов являются три следующие характеристики:

- минимальная разрушающая сила на растяжение, имеющая преимущественное значение для подвесных изоляторов;

- минимальная разрушающая сила на изгиб, имеющая преимущественное значение для опорных и проходных изоляторов;

- минимальная разрушающая сила на сжатие, которая для большинства изоляторов имеет второстепенное значение.

Измеряют минимальную разрушающую силу в деканьютонах (даН), что почти совпадает с килограммом силы, или в килоньютонах (кН).

Изготавливают изоляторы из электротехнического фарфора, закаленного электротехнического стекла и полимерных материалов (кремнийорганическая резина, стеклопластик, фторопласт).

2.2. Изоляторы воздушных линий электропередачи, контактной сети и тяговых подстанций

Изоляторы воздушных линий электропередачи чаще всего бывают тарельчатые, штыревые и стержневые. Эти изоляторы спроектированы так, чтобы в сухом состоянии пробивное напряжение превышало пробивное напряжение перекрытия примерно в 1.6 раза, что обеспечивает отсутствие пробоя при перенапряжениях. Одна из возможных конструкций тарельчатого изолятора показана на рис. 2.1.

Для повышения надежности изоляции и повышения разрядных напряжений тарельчатые изоляторы соединяют в гирлянды. Узел крепления у тарельчатых изоляторов выполнен шарнирным, поэтому на изолятор действует только растягивающая сила.

Рис. 2.1. Эскиз изолятора ПФ-70А

Стержневые изоляторы изготавливают из высокопрочного фарфора и из полимерных материалов (рис. 2.2).

Рис. 2.2. Стержневой фарфоровый и стержневой полимерный изоляторы

Механическая прочность фарфоровых стержневых изоляторов меньше, чем у тарельчатых, поскольку фарфор в стержневых изоляторах работает на растяжение, а иногда и на изгиб, а в тарельчатых - на сжатие внутри чугунной шапки изолятора.

Несущей конструкцией полимерного изолятора обычно является стеклопластиковый стержень, имеющий слабую дугостойкость. Этот стержень закрывают ребристым чехлом из кремнийорганической резины или фторопласта, которые обладают отталкивающими свойствами к влаге и загрязнениям.

Штыревые изоляторы крепятся на опоре с помощью металлического штыря или крюка (рис. 2.3). Из-за большого изгибающего усилия на такой изолятор применяют штыревые изоляторы на напряжения не выше 35 кВ.

Рис. 2.3. Изолятор ШФ-10В

На контактной сети электрифицированной железной дороги используется большое количество разновидностей изоляторов. По месту установки изолятора и по конструкции можно выделить шесть подгрупп изоляторов: подвесные изоляторы, которых больше всего;

фиксаторные изоляторы, используемые для изоляции фиксаторных узлов;

консольные изоляторы, которые используют в изолированных консолях и которые могут быть тех же марок, что и фиксаторные; секционирующие изоляторы - особый вид изоляторов, используемых в конструкциях секционных изоляторов (секционные изоляторы, собственно, изоляторами уже не являются, это сборные конструкции для секционирования контактной сети); штыревые изоляторы, используемые для крепления проводов линий продольного электроснабжения, располагаемых на опорах контактной сети;

опорные изоляторы, используемые в мачтовых разъединителях.

В качестве станционных изоляторов используются опорные изоляторы, в основном стержневого типа, проходные изоляторы разных типов и подвесные изоляторы (гирлянды тарельчатых изоляторов).

В табл. 2.2 приведены характеристики нескольких распространенных видов изоляторов.

Таблица 2.2 Основные характеристики некоторых типов изоляторов

Тип Hc, мм D, мм lут, мм Uсхр, кВ Uмкр, кВ Разрушающая сила, кН
растяж. сжатие изгиб
Стержневые фарфоровые                
VKL-60/7     -       -  
ИКСУ-27.5     -       - 5.2
Штыревые фарфоровые                
ШФ-10А           - -  
ШФ-10Г           - - 12.5
Штыревые стеклянные                
ШС-10А           - -  
Полимерные ребристые из кремнийорганической резины                
НСК-120/27.5             - -
ФСК-70/0.9             -  
ОСК-70/0.9                
Стеклопластиковый стержень, покрытый фторопластовой защитной трубкой                
НСФт-120/1.2       -     - -
Тарельчатые фарфоровые                
ПФ-70А             - -
ПФГ-60Б             - -
Тарельчатые стеклянные                
ПС-70Д       -     - -

2.3. Распределение напряжения вдоль гирлянды изоляторов

Гирлянда изоляторов, составленная из подвесных тарельчатых изоляторов, является одной из наиболее часто встречающихся видов изоляции проводов воздушных линий и контактной сети.

Напряжение, приложенное к гирлянде изоляторов, распределяется неравномерно, и на разные изоляторы приходятся разные доли напряжений, что снижает напряжение начала короны и напряжение перекрытия гирлянды.

В наиболее неблагоприятной ситуации оказывается изолятор, ближайший к проводу.

Основной причиной неодинаковых напряжений на изоляторах можно считать наличие паразитных емкостей металлических частей изоляторов по отношению к земле (рис. 2.4). В гирлянде можно различить три вида емкостей: собственные емкости изоляторов C 0, емкости металлических частей по отношению к земле C 1 и емкости по отношению к проводу C 2

Порядок величин емкостей примерно таков: C 0≈50 пФ, C 1 ≈5 пФ, C 2≈0.5 пФ.

Рис. 2.4. Гирлянда изоляторов и схема замещения гирлянды

 

В первом приближении емкостью изоляторов по отношению к проводу можно пренебречь, и тогда схема замещения гирлянды сухих изоляторов выглядит как на рис. 2.4,б. При переменном напряжении по емкостным элементам протекает емкостный ток, и ток первого снизу изолятора разветвляется на ток емкостного элемента по отношению к земле и ток оставшейся части гирлянды.

Через второй снизу изолятор течет емкостный ток меньшей величины, и падение напряжения максимально на нижнем, ближайшем к проводу изоляторе, который находится в наихудших условиях.

При числе изоляторов больше трех-четырех минимальное напряжение приходится, однако, не на самый верхний изолятор. Наличие емкостей C 2 приводит к некоторому выравниванию неравномерности падений напряжения и минимальное напряжение оказывается на втором-третьем (или далее, в зависимости от числа изоляторов в гирлянде) изоляторе сверху рис. 2.5.

Рис. 2.5. Доля напряжения на изоляторах в гирлянде из 22 изоляторов

 

Для выравнивания напряжения по изоляторам гирлянды применяют экраны в виде тороидов, овалов, восьмерок, закрепляемых снизу гирлянды; на линиях с расщепленными фазами утапливают ближайшие изоляторы между проводами расщепленной фазы; расщепляют гирлянду около провода на две. Все эти меры выравнивают распределение напряжения из-за увеличения емкости C 2.

<== предыдущая лекция | следующая лекция ==>
Электрический разряд в газах | Внутренняя изоляция электроустановок
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 2131; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.