Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Внутренняя изоляция электроустановок




РЕЗЮМЕ

 

Среди изоляторов по расположению токоведущей части различают опорные, проходные и подвесные изоляторы, по конструктивному исполнению различают тарельчатые, стержневые и штыревые изоляторы, а по месту установки различают линейные и станционные изоляторы.

К основным характеристикам изоляторов относят номинальное напряжение, разрядные напряжения, геометрические параметры и механические характеристики.

На контактной сети используются подвесные изоляторы, фиксаторные изоляторы, консольные изоляторы, секционирующие изоляторы, штыревые изоляторы и опорные изоляторы.

Напряжение, приложенное к гирлянде изоляторов, распределяется неравномерно, и наибольшее напряжение оказывается на изоляторе, ближайшем к проводу.

 

Контрольные вопросы

1. Приведите классификации изоляторов.

 

2. Назовите основные группы параметров изоляторов и отдельные их

характеристики.

 

3. Опишите конструктивные особенности отдельных изоляторов контактной сети и тяговых подстанций.

 

4. В чем причина неравномерного распределения напряжения по гирлянде изоляторов?

 

 

3. Изоляция силовых трансформаторов

Изоляция силовых трансформаторов с металлическим баком разделяется на внешнюю и внутреннюю. Внешняя изоляция составлена воздушными промежутками между вводами, между вводами и заземленным баком, а также по поверхности фарфоровых покрышек вводов.

К внутренней изоляции относят изоляционные промежутки внутри бака: изоляцию обмоток, масляной части вводов, отводов и вспомогательных устройств.

Изоляцию обмоток разделяют на главную и продольную. Главная изоляция составлена изоляцией между обмотками, между обмотками и магнитопроводом, междуфазной изоляцией между наружными катушками двух соседних стержней и изоляцию наружной катушки от стенки бака.

К продольной изоляции относят изоляционные промежутки между витками, между слоями витков и между катушками одной обмотки. Габариты главной и продольной изоляции при напряжениях до 220 кВ включительно определяются грозовыми перенапряжениями. Конструкция изоляции должна обеспечивать охлаждение активных частей трансформатора.

Рис. 3.1. Общий вид главной изоляции обмоток трансформаторов

Главная изоляция выполняется преимущественно маслобарьерного типа, обладающая высокой импульсной электрической прочностью и обеспечивающая интенсивное охлаждение обмоток и магнитопровода. Эта изоляция представляет собою трансформаторное масло с барьерами из электротехнического картона.

Общий вид такой изоляции показан на рис. 3.1. Набор барьеров составляют из трех основных видов: цилиндрический барьер, плоская шайба и угловая шайба.

Барьеры разделяют один большой масляный промежуток на несколько меньших, что увеличивает общее пробивное напряжение. Для наибольшего эффекта барьеры должны располагаться перпендикулярно силовым линиям электрического поля.

 

 

 

 

Рис. 3.2. Вертикальное (а) и горизонтальное (б) сечение масляных каналов

 

 

Для обеспечения циркуляции масла и отвода тепла сооружают масляные каналы двух основных видов (рис. 3.2):

вертикальные каналы между цилиндрическими барьерами и между барьерами и обмоткой с помощью вертикальных реек; горизонтальные каналы между витками с помощью горизонтальных прокладок, которые служат одновременно для крепления вертикальных реек.

Характерное строение главной изоляции трансформаторов напряжением 35 кВ и 110 кВ показано на рис. 3.3.

В трансформаторах 220 кВ и выше часто делают ввод в середину катушки, что приводит к уменьшению напряжения на краях катушки.

Продольная изоляция силовых трансформаторов выполняется обычно слоями электроизоляционной бумаги, накладываемой поверх провода.

Рис. 3.3. Главная изоляция трансформаторов 35 кВ (а) и 110 кВ (б)

 

В маслобарьерной изоляции электрически наиболее нагруженными оказываются прослойки масла, поскольку диэлектрическая проницаемость ε rэлектрокартона составляет примерно 4, а у масла ε r ≈2.2, к тому же электрическая прочность масла в 3-4 раза меньше электрической прочности пропитанного электрокартона. Нарушение маслобарьерной изоляции начинается с пробоя масляного канала без полного пробоя изоляции, при этом в месте пробоя образуются необратимые повреждения электрокартона или бумаги, снижающие ее электрическую прочность.

Чтобы этого не происходило, в масляном канале рабочие напряженности электрического поля принимают от 2.5 кВ/мм до 5 кВ/мм в первом масляном канале, где напряженность поля наибольшая.

3.2. Изоляция вводов высокого напряжения

Проходные изоляторы высокого напряжения, называемые иначе вводами, имеют неблагоприятное расположение электродов с большой напряженностью электрического поля. Наибольшая напряженность электрического поля наблюдается у края фланца изолятора (рис. 3.4), где велики и нормальная к поверхности изолятора составляющая напряженности электрического поля, и тангенциальная составляющая.

В этом месте возможно возникновение короны, скользящих разрядов, приводящих к перекрытию и к радиальным пробоям. Довольно часто при эксплуатации появляются наиболее опасные механические нагрузки на изгиб изолятора.

Кроме того, на изолятор воздействую тепловые нагрузки за счет нагрева токоведущих частей и диэлектрических потерь в изоляционном теле.

Рис. 3.4. Схематическое изображение проходного изолятора

 

Для создания более равномерного электрического поля используются конструкции конденсаторного типа, в которых требуемое распределение напряжения по изоляционной конструкции принудительно осуществляется при помощи металлических обкладок, закладываемых в изоляцию в процессе ее намотки (рис. 3.5). Такая конструкция уменьшает требуемые размеры ввода, особенно его диаметр, что улучшает условия отвода тепла.

Чаще всего изоляторы конденсаторного типа выполняются так, чтобы обеспечить постоянство аксиальной (продольной) составляющей напряженности электрического поля.

Для этого толщину слоя изоляции выбирают так, чтобы обеспечить одинаковые емкости между обкладками и одинаковые напряжения на каждом слое; уступы также принимаются одинаковыми. Иногда, однако, выполняют одинаковую толщину слоев.

Рис. 3.5. Эскиз проходного изолятора конденсаторного типа

По типу выполнения изоляции проходные изоляторы делятся на сплошные фарфоровые, бумажно-бакелитовые, маслобарьерные и бумажно-масляные (конденсаторного типа).

Для внутренней установки на напряжение до 35 кВ используются фарфоровые армированные проходные изоляторы, внутри которых проходит токоведущий стержень, или бумажно-бакелитовые проходные изоляторы конденсаторного типа.

Бумажно-бакелитовые изоляторы изготавливаются путем намотки бумаги, пропитанной бакелитовой смолой, с обкладками из металлической фольги, обжимаются и выдерживаются при температуре 160оС, при которой происходит полимеризация смолы. Недостатками бумажно-бакелитовых вводов являются малая влагостойкость и наличие газовых включений, поэтому на напряжения выше 35 кВ их не применяют.

На напряжении 110 кВ и выше используются конденсаторные вводы с маслобарьерной или бумажно-масляной изоляцией. В связи с более простой технологией изготовления наиболее распространены последние. В этой конструкции на токоведущий стержень наматывается изоляция из кабельной бумаги, а между слоями бумаги закладываются металлические обкладки из алюминиевой фольги.

Бумага высушивается под вакуумом и пропитывается трансформаторным маслом. Сверху конструкция закрывается фарфоровыми покрышками, укрепленными на металлическом фланце. Пространство внутри покрышек заполняется трансформаторным маслом.

Для повышения тепловой устойчивости ввода увеличивают площадь сечения стержня и улучшают качество изоляции снижением тангенса угла диэлектрических потерь.

3.3. Изоляция силовых конденсаторов

Силовые конденсаторы применяют в следующих случаях:

- в силовых сетях промышленной частоты высокого и низкого напряжений частотой 50 Гц (косинусные конденсаторы, конденсаторы продольной емкостной компенсации, конденсаторы емкостного отбора мощности);

- в силовых установках повышенных частот (электротермические установки частотой до 10 кГц);

- в установках постоянного и пульсирующего напряжений;

- в установках импульсного напряжения.

 

Основное характерное отличие силовых конденсаторов от прочих конденсаторов - сравнительно большие протекающие через них токи, которые даже при малых диэлектрических потерях приводят к заметному нагреву конденсаторов.

Основные проблемы, решаемые при проектировании и изготовлении конденсаторов, заключаются в обеспечении требуемой емкости, рабочего напряжения и тепловой устойчивости. Все это определяется изоляцией конденсатора: допустимой величиной рабочей напряженности электрического поля, диэлектрическими потерями и условиями теплоотвода.

Силовые конденсаторы состоят из секций в основном рулонного типа. Секции на цилиндрическую оправку и после снятия с оправки сплющивают, либо оставляют на цилиндрическом изоляционном каркасе, получая цилиндрическую секцию. В зависимости от номинального напряжения и емкости конденсатора его секции соединяются параллельно, последовательно или смешанно (рис. 3.6). Пакет помещают в корпус, пропитывают и герметизируют для предотвращения попадания воздуха и влаги.

Рис. 3.6. Смешанное параллельно-последовательное соединение секций

 

Секции конденсаторов выполняются либо со скрытой, либо с выступающей фольгой (рис. 3.7). Конструкцию с выступающей фольгой применяют для улучшения теплоотвода и для уменьшения индуктивности секций. Для увеличения напряжения применяют конструкцию со <слепой> промежуточной фольгой, при этом секция состоит из нескольких подсекций, соединенных последовательно, а выводы имеют только первая и последняя фольга (рис. 3.7г).

Рис. 3.7. Рулонные секции конденсаторов со скрытой фольгой (а), с выступающей фольгой (б) и с промежуточной <слепой> фольгой (в)

 

В качестве изоляции используется пропитанная конденсаторная бумага и полимерные пленки.

Самые существенные характеристики конденсаторной бумаги - ее толщина (колеблется от 4 до 30 мкм), плотность, угол диэлектрических потерь (у пропитанной бумаги tg δ=0.0012..0.0026) и электрическая прочность, сильно зависящая от материала пропитки.

Из полимерных пленок в конденсаторах промышленной и повышенной частоты применяют полипропиленовую пленку (εr=2.25, tg δ=0.0003), а в импульсных конденсаторах - лавсановую пленку (ε r=3.2, tg δ=0.003 при 50 Гц и tg δ=0.02 при 1 МГц). У полимерных пленок высокая электрическая прочность, достаточная термостойкость и механическая прочность, совместимость с жидкими диэлектриками, применяемыми для пропитки.

В силовых конденсаторах часто применяют комбинированную бумажно-пленочную изоляцию, в которой слои конденсаторной бумаги перемежаются со слоями полимерной пленки. Бумага впитывает жидкость, втягивая ее в прослойки между пленками, и обеспечивает отсутствие газовых включений. В такой изоляции благоприятное распределение напряженности электрического поля: в пленке напряженность примерно вдвое больше, чем в бумаге, поскольку εr пленки примерно вдвое меньше, а электрическая прочность пленки выше.

В качестве пропиток используют нефтяное конденсаторное масло, хлорированные дифенилы и их заменители, а в импульсных конденсаторах - касторовое масло. Хлорированные дифенилы имеют более высокую диэлектрическую проницаемость по сравнению с конденсаторным маслом, высокую стойкость к разложению в электрическом поле, негорючесть, но токсичны и чувствительны к примесям.

Электродами в силовых конденсаторах является алюминиевая фольга толщиной 7..12 мкм. В некоторых типах конденсаторов используется слой металла (цинка или алюминия), нанесенный на поверхность ленты или бумаги.

Рабочие напряженности поля E раб в изоляции бумажно-масляных конденсаторов составляют 12..14 кВ/мм, при пропитке хлордифенилами или их заменителями E раб возрастают до 18..22 кВ/мм, но при этом возможен недопустимый нагрев и угол потерь должен быть малым. Бумажно-полипропиленовый диэлектрик с двумя листами пленки (εr=2.25) и листом бумаги (ε r=4) между ними допускает E раб от 18 кВ/мм и выше в бумажном компоненте в зависимости от пропитки и до 50..60 кВ/мм в пленке. Конденсаторы с чисто пленочным диэлектриком допускают E раб до 50..60 кВ/мм, а в конденсаторах с использованием металлизированной полипропиленовой пленки - до 70 кВ/мм.

При повышенных частотах допустимые рабочие напряженности поля определяются в основном тепловым режимом. При постоянном напряжении допустимая рабочая напряженность может достигать 80 кВ/мм.

3.4. Изоляция силовых кабелей

Силовые кабели предназначены для передачи и распределения электрической энергии. Кабель высокого напряжения состоит из следующих составных частей:

- одна или несколько токопроводящих жил;

- изоляция;

- оболочка из алюминия или свинца для герметизации;

- броня из стальных лент или проволок для защиты от механических повреждений;

- покровы из лент кабельной бумаги или пряжи, пропитанные битумом, для защиты от коррозии.

Изоляция кабеля разделяется на фазную, между жилами, и поясную, между жилами и оболочкой.

Жилы кабеля изготавливают из алюминия или меди. Кабели на напряжение до 10 кВ включительно изготавливаются с секторными жилами, а на напряжение 20 кВ и выше - с круглыми жилами, обычно с отдельными экранами.

Конструкция с секторными жилами обеспечивает более полное использование объема под металлической оболочкой, а круглые жилы с экранами служат для обеспечения равномерного радиально направленного электрического поля (рис. 3.8).

 

Рис. 3.8. Трехжильные кабели с вязкой пропиткой

 

Изоляция выполняется либо слоями кабельной бумаги, пропитанной вязкими маслоканифольными компаундами или кабельными маслами (нефтяными или синтетическими), либо из пластмасс. Кабельная бумага толще конденсаторной, от 80 до 170 мкм. Слои бумаги накладывают так, чтобы зазоры слоев не совпадали.

В высоковольтных кабелях с пластмассовой изоляцией преимущественно используется полиэтилен низкой и высокой плотности, иногда прослойки изоляции выполняют из фторопласта. Кабели с пластмассовой изоляцией выполняются на напряжения до 400 кВ.

Кабели с вязкой пропиткой изготавливают на напряжения не выше 35 кВ, поскольку при тепловых подвижках в такой изоляции образуются пустоты, снижающие рабочие напряженности электрического поля. В кабелях 110 кВ и выше применяется бумажная изоляция с менее вязкой пропиткой и поддержанием избыточного низкого (до 0.5 МПа) или высокого (до 1.5 МПа) давления масла. Кабели высокого давления в ряде случаев выполняют в стальном трубопроводе, каждая жила поверх изоляции имеет отдельный металлический экран.

3.5. Изоляция электрических машин высокого напряжения

К электрическим машинам высокого напряжения относятся турбогенераторы, гидрогенераторы, синхронные компенсаторы, синхронные и асинхронные двигатели большой мощности с номинальными напряжениями 3 кВ и выше.

Основной особенностью работы изоляции машин является тяжелые условия эксплуатации: воздействия перенапряжений, высокой рабочей температуры и перепадов температуры, вибрации, ударных механических воздействий. По этой причине изоляция машин должна обладать высокой нагревостойкостью (класса не ниже B) и механической прочностью.

В электрических машинах высокого напряжения изоляцию обмоток статоров разделяют на следующие виды:

- корпусная или главная изоляция - между обмоткой и сталью статора;

- междуфазная изоляция - между обмотками различных фаз;

- витковая или продольная изоляция - между витками одной секции или между катушками;

- изоляция элементарных проводников - между проводниками в одном витке или стержне обмотки.

Витковая изоляция выполняется обычно из стеклослюдяной ленты или на основе эмалированных проводов со стекловолокнистой обмоткой, пропитанных эпоксидным компаундом. Главная изоляция выполняется на основе слюдяных изоляционных материалов с обеспечением отсутствия газовых прослоек. Токоведущая часть стержней выполняется прямоугольной формы, и электрическое поле в пазах неоднородно.

Для снижения неоднородности поля углы стержней закругляют или применяют экраны (прокладки) из алюминия.

Кратковременная электрическая прочность корпусной изоляции при толщинах от 3 до 12 мм характеризуется на частоте 50 Гц средней электрической прочностью 30..35 кВ/мм. Однако рабочие напряженности электрического поля в связи с нестабильностью характеристик выбираются на уровне 2..4 кВ/мм.

При рабочих напряженностях в высоковольтных электрических машинах в течение длительного времени существую частичные разряды заметной интенсивности, которые слабо влияют на надежность и долговечность изоляции, поскольку слюда весьма стабильна к воздействию частичных разрядов.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1160; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.