Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Квазистационарные и коммутационные перенапряжения




РЕЗЮМЕ

К длинным линиям относят электрические цепи, в которых необходимо учитывать запаздывание в распространении электромагнитного поля. К цепям с распределенными параметрами относят цепи, в которых необходимо заниматься распределением напряжений и токов внутри отдельных элементов цепи.

Прямое применение законов Кирхгофа для анализа процессов в длинных линиях невозможно из-за того, что в них не учитывается запаздывание в распространении электромагнитного поля. Применение законов Кирхгофа к коротким отрезкам длинных линий приводит к дифференциальным уравнениям, называемым телеграфными уравнениями.

В длинной линии распространяются падающие и отраженные волны напряжений. Грозовые перенапряжения полностью относятся к таким типам волн.

На конце линии возможно удвоение падающей волны напряжения, а в обмотках трансформаторов на главной изоляции также возможны условия удвоения перенапряжений. Импульсные перенапряжения больше по величине на витках, расположенных вблизи проходного изолятора, с которого приходит волна перенапряжения.

 

Контрольные вопросы

1. Что означают понятия <длинная линия>, <цепь с распределенными параметрами?

 

2. Выведите телеграфные уравнения двухпроводной линии и покажите их решение для линии без потерь.

 

3. Покажите, как происходит падение волны перенапряжения на резистивную, емкостную и индуктивную нагрузки.

 

4.Представьте анализ процессов, происходящих в обмотке трансформатора при воздействии волны грозового перенапряжения.

 

 

15.1. Емкостный эффект линий электропередачи

Линия электропередачи обладает индуктивными и емкостными свойствами, что обусловливает возможность резонансных эффектов. В наиболее простой форме это отображается П-образной схемой замещения рис. 15.1, которая аналогична схеме раздела 14.1 при пренебрежении утечкой по изоляции и пригодна для коротких отрезков линии. Считается, что линия является электрически короткой, если ее длина не превышает одной десятой длины волны электромагнитного поля; для 50 Гц в воздухе длина волны составляет 6000 км. Чтобы погрешности представления линии схемой рис. 15.1 не превышали 3%, нужно еще более жесткое ограничение длины линии - не более одной двадцатой длины волны, то есть не более 300 км.

Рис. 15.1. Однолинейная схема ЛЭП (а) и П-образная схема замещения (б)

Одностороннее питание линии возникает практически всегда в процессе каждого ее включения и отключения из-за несовпадения моментов коммутации выключателей на разных концах линии. Резонанс в схеме рис. 15.1б наступает при длине линии 1500 км и отсутствии нагрузки, если внутреннее сопротивление генератора мало.

При малой мощности генератора (большая индуктивность L Г) резонанс наступает при меньшей длине линии. Корона на проводах линии увеличивает емкость проводов и также приводит к резонансу на меньших длинах. При резонансе увеличение напряжения на конце линии может в несколько раз превысить номинальное напряжение. Если длина линии сравнительно мала, то наблюдается небольшое повышение напряжения на конце линии, зависящее от длины и параметров линии.

Подключение к линии трансформаторов снижает емкостный эффект линии в основном за счет насыщения стали трансформатора при повышенном напряжении; снижение за счет тока холостого хода при номинальном режиме обычно невелико.

Уменьшение длины участков линий уменьшает перенапряжения емкостного эффекта. При больших длинах участков линии (более 300 км) и малой мощности связываемых систем на линии устанавливают шунтирующие реакторы, компенсирующие емкостный ток линии.

15.2. Резонансное смещение нейтрали в сетях 3..35 кВ <Правила устройства электроустановок> для электрических сетей напряжением 3..35 кВ предусматривают работу с изолированной нейтралью или с нейтралью, заземленной через дугогасящий реактор или резистор. Это мероприятие повышает надежность электроснабжения и сроки службы трансформаторов и выключателей, поскольку однофазные короткие замыкания на землю характеризуются малыми токами и допустимы на достаточно длительное время.

Так как этот вид коротких замыканий нередко сопровождается электрической дугой, для ее прерывания требуется компенсация емкостного тока проводов линии с помощью дугогасящего реактора. Компенсация емкостного тока должна применяться при значениях этого тока в нормальных режимах более 10 А в сетях напряжением 3-20 кВ, имеющих железобетонные и металлические опоры на воздушных линиях электропередачи, и во всех сетях напряжением 35 кВ, а при деревянных опорах - при токах более 30 А при напряжении 6 кВ и 20 А при напряжении 10 кВ.

Принцип работы дугогасящего реактора поясняется рис. 15.2 для ситуации короткого замыкания в фазе С. При таком коротком замыкании на емкости провода А оказывается напряжение UАС , вектор тока IA опережает на 90о вектор UАС (или отстает на 90о от вектора UСА), на емкости провода В действует напряжение U и ток IВ опережает на 90о это напряжение. На дугогасящем реакторе напряжение равно - UC, и ток IР отстает от напряжения - UC на 90о. Если токи IA и IВ одинаковы и соблюдается условие , то сумма токов IA, IВ и IР , равная току IС, равна нулю, и дуга установившегося тока короткого замыкания не может возникнуть.

Рис. 15.2. Схема включения дугогасящего реактора (а), векторная диаграмма напряжений (б) и сумма токов (с)

Однако при отсутствии замыкания на землю подключение дугогасящего реактора может вызвать резонансное смещение нейтрали, что обычно сопровождается квазистационарными перенапряжениями. Дело в том, что при идеальной настройке реактора при нормальной работе системы напряжение на реакторе равно , где - напряжение на нейтрали трансформатора при отсутствии дугогасящего реактора, - активное сопротивление реактора. Если система полностью симметрична, то равно нулю, но полной симметрии не бывает, а отношение велико (порядка нескольких десятков), поэтому смещение нейтрали нормального режима может существенно превышать фазное напряжение.

Для снижения напряжения на реакторе в нормальном режиме улучшают симметрию системы, а также вводят некоторую расстройку реактора от резонанса. Большая несимметрия возникает при неодновременной работе фаз выключателей, поэтому важно обеспечить минимальный разброс в действии фаз (в пределах 2..4 полупериодов частоты 50 Гц).

15.3. Перенапряжения при гашении дуги Большинство коммутаций в цепях высокого напряжения сопровождаются возникновением электрической дуги, которая представляет собой вид электрического разряда, характеризуемый большой плотностью тока и термической ионизацией молекул газа. Скорость снижения тока при гашении дуги определяет возникающие перенапряжения в сети.

Условия существования дуги и ее характеристики зависят от скорости ее охлаждения. При токах более 200-300 А и неподвижной дуге в воздухе средний градиент потенциала на дуге составляет 8..10 В/см. Если напряжение на размыкаемых контактах меньше 15..20 В, то дуга возникнуть не может и ток прерывается за очень короткое время (менее 1 мс), что при больших токах и значительных индуктивностях в цепи приводит к большим перенапряжениям.

При небольших токах, менее 0,4..1 А, не обеспечивается баланс тепла в дуге и размыкание цепи сопровождается многочисленными неустойчивыми разрядами со значительными перенапряжениями.

При достаточно больших токах и напряжениях на размыкаемых контактах возникает устойчивая дуга, свойства которой определяются вольтамперной характеристикой (статической для установившейся дуги постоянного тока и динамической при отключении или при переменном напряжении).

Для иллюстрации влияния скорости гашения дуги на возникающие перенапряжения достаточно рассмотреть процессы в простейшей цепи постоянного тока с резистором и катушкой по рис. 15.3.

Рис. 15.3. Схема цепи постоянного тока

Согласно второму закону Кирхгофа . При расположении вольтамперной характеристики дуги по рис.15.4а и токе получается , так что ток в цепи растет вплоть до значения , и при токе получается , изменения тока не будет и дуга будет гореть длительно. Точка является точкой неустойчивого равновесия.

Рис. 15.4. Вольтамперная характеристика устойчивой (а) и неустойчивой (б) электрической дуги

Чтобы дуга могла погаснуть, необходимо увеличивать , например, путем растягивания дуги. Если ее вольтамперная характеристика будет везде выше прямой , как на рис. 15.4б, то везде , источник питания не сможет поддерживать дугу, ток будет уменьшаться и дуга погаснет. Скорость снижения тока при этом будет определяться параметрами цепи и скоростью удлинения дуги.

Удлинение дуги может быть естественным, как в роговых разрядниках, или принудительным под действием магнитного поля; изменение вольтамперной характеристики дуги может быть и под действием принудительного ее охлаждения.

При переменном напряжении ток дуги периодически снижается до нуля и дуга полностью прекращается. Если восстанавливающееся напряжение на промежутке меньше пробивного напряжения промежутка, то дуга возникнуть больше не может и ток естественным образом прекращается; по этой причине гашение дуги переменного тока происходит значительно легче гашения дуги постоянного тока.

Потенциалы точек схемы рис. 15.3 меняются во времени, что показано на рис. 15.5. Потенциал точки b определяется равенством , а потенциал точки c, то есть напряжение на дуге, равен

.

Рис. 15.5. Перенапряжения при гашении дуги

На рис. 15.5 показано кривая изменения во времени напряжения в точке b, из которой хорошо видно, что возникающее перенапряжение определяется скоростью снижения тока в цепи.

15.4. Коммутационные перенапряжения

Коммутационные перенапряжения возникают при включении ненагруженной линии, при котором на квазистационарное перенапряжение за счет емкостного эффекта накладываются затухающие колебания на емкости и индуктивности линии, частота которых зависит от длины линии.

Амплитуда колебательной составляющей максимальна при угле включения 90о или 270о и величина ее составляет порядка двух амплитуд установившегося режима.

При совпадении частоты собственных колебаний линии с частотой сети амплитуда колебательной составляющей может достигнуть десятикратной величины вынужденной составляющей.

Для снижения этого типа перенапряжений используют следующие меры:

- шунтирующие резисторы с двухступенчатым включением, сначала с резистором сопротивлением 600..1200 Ом, а затем через 10..20 мс шунтирование этого резистора (рис. 15.6);

Рис. 15.6. Схемы выключателя с шунтирующим резистором

- применение выключателей, позволяющие выбирать наиболее благоприятный момент включения;

- использование вентильных разрядников и ОПН для ограничения перенапряжений;

- секционирование линий на участки длиной не более 250..300 км.

При автоматическом повторном включении после однофазного или двухфазного замыкания переходный процесс отличается от включения ненагруженной линии возможным наличием зарядов на неповрежденных фазах линии. Заряд на линии без реакторов стекает на землю через активные проводимости изоляторов, и в среднем для сухой погоды при задержке АПВ на 0.4 с напряжение оставшихся зарядов составляет 60-70% первоначального. В целом перенапряжения при АПВ обычно выше, чем при включении ненагруженных линий.

Значительные коммутационные перенапряжения могут возникать не только при включениях, но и при отключениях ненагруженных линий и конденсаторных батарей. Значительные перенапряжения при отключении емкостного элемента могут возникнуть из-за повторных пробоев между расходящимися контактами выключателя.

Пробивное напряжение межконтактного промежутка гораздо быстрее расчет у воздушных выключателей с их быстрым перемещением контактов и интенсивным дутьем, чем у масляных выключателей. При переходе тока через ноль дуга прекращается, а через полпериода из-за остающегося на емкостном элементе напряжения восстанавливающееся напряжение на контактах составит двойную амплитуду сетевого напряжения, и если оно окажется больше пробивного напряжения, то возникает повторное включение цепи.

Следующий обрыв тока произойдет при прохождении тока через нулевое значение и может опять произойти повторный пробой. Коммутация представляет собой серию чередующихся отключений и включений с пробоями на максимумах напряжений и раскачиванием процесса в отключаемой цепи.

Из-за больших значений возникающих перенапряжений подобного типа целесообразно применять выключатели, не дающие повторных зажиганий в процессе отключения ненагруженных линий и конденсаторных батарей.

К появлению перенапряжений приводит и отключение коротких замыканий, поскольку при этом из-за селективности защиты отключается только часть линии, а оставшаяся часть представляет собой линию, на которой восстанавливается напряжение после отключения ближнего к короткому замыканию выключателя. Наличие на линии устройства продольной компенсации приводит к увеличению перенапряжений, которые могут превысить трехкратное значение амплитуды напряжения источника питания линии.

Отключение ненагруженного трансформатора (и любого другого индуктивного элемента) сопровождается возникновением при срезе тока выключателем затухающих колебаний большой амплитуды в контуре индуктивность трансформатора - емкость цепи. Возникающие при этом повторные зажигания дуги в выключателе ограничивают возникающие перенапряжения, однако при большом количестве повторных зажиганий больше и перенапряжения, которые могут достигнуть четырех амплитуд рабочего напряжения и более. Разрядники, устанавливаемые на трансформаторном присоединении, ограничивают перенапряжения.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1677; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.024 сек.