Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принципиальные схемы абсорбции

Равновесие между фазами при абсорбции. Влияние температуры и давления на растворимость газов в жидкостях. Материальный баланс процесса и уравнения рабочей линии при абсорбции и десорбции. Расход абсорбента. Тепловой баланс абсорбции. Отвод тепла при абсорбции.

Тема 3.3. Абсорбция 12ч., в т.ч. лаб. раб. и практ. занят 6ч.

АБСОРБЦИЯ

Студент должен:

знать:

- физические основы и теорию процесса абсорбции (равновесие между фазами, принципы составления материального теплового баланса, уравнение рабочей линии);

- порядок расчета насадочного и барботажного абсорбера;

- сущность и методы проведения десорбции;

уметь:

- составлять материальный и тепловой баланс;

- определять расход поглотителя;

- строить равновесную и рабочую линию процесса;

- определять основные габаритные размеры абсорберов, пользуясь справочниками.

Назначение абсорбции. Абсорбция при разделении гомогенных газовых смесей и очистки газов. Выбор абсорбента. Физическая абсорбция и абсорбция, сопровождаемая химическим взаимодействием. Десорбция.

Абсорбцией называют процесс избирательного поглощения компонентов из газовых или парогазовых смесей жидкими поглотителями – абсорбентами.

Принцип абсорбции основывается на различной растворимости компонентов газовых и парогазовых смесей в жидкостях при одних и тех же условиях. Поэтому выбор абсорбентов осуществляют в зависимости от растворимости в них поглощаемых компонентов, которая определяется:

· физическими и химическими свойствами газовой и жидкой фаз;

· температурой и давлением осуществления процесса;

· содержанием газа в смеси.

При выборе абсорбента необходимо учитывать такие его свойства, как селективность (избирательность) по отношению к поглощаемому компоненту, токсичность, пожароопасность, стоимость, доступность и др.

Различают физическую абсорбцию и химическую абсорбцию (хемосорбцию). При физической абсорбции поглощаемый компонент образует с абсорбентом только физические связи. Процесс этот в большинстве случаев является обратимым. На этом свойстве основано выделение поглощенного компонента из раствора – десорбция. Если поглощаемый компонент вступает в реакцию с абсорбентом и образует химическое соединение, то процесс называют хемосорбцией.

Процесс абсорбции обычно является экзотермическим, т. е. сопровождается выделением теплоты.

Абсорбция широко используется в промышленности для разделения углеводородных газов на нефтеперерабатывающих установках, получения соляной и серной кислот, аммиачной воды, очистки газовых выбросов от вредных примесей, выделения ценных компонентов из газов крекинга или пиролиза метана, из газов коксовых печей и т. д.

Равновесие в процессах абсорбции определяется правилом фаз Гиббса (В.4), представляющим обобщение условий гетерогенного равновесия:

C = К - Ф + 2.

Поскольку процесс абсорбции осуществляется в двухфазной (газ – жидкость) и трехкомпонентной (один распределяемый и два распределяющих компонента) системе, число степеней свободы – три.

Таким образом, равновесие в системе газ (пар) – жидкость может характеризоваться тремя параметрами, например температурой, давлением и составом одной из фаз.

Равновесие в системе газ – жидкость определяется законом растворимости Генри, согласно которому при данной температуре мольная доля газа в растворе (растворимость) пропорциональна парциальному давлению газа над раствором:

где р – парциальное давление газа над раствором; х – мольная концентрация газа в растворе; Е – коэффициент пропорциональности (коэффициент Генри).

Закон Генри распространяется в первую очередь на слаборастворимые газы, а также на растворы с низкими концентрациями хорошо растворимых газов при отсутствии химической реакции.

Коэффициент Е имеет размерность давления, совпадающую с размерностью р, и зависит от природы растворяющегося вещества и температуры. Установлено, что с увеличением температуры растворимость газа в жидкости уменьшается. Когда в равновесии с жидкостью находится смесь газов, закону Генри может следовать каждый из компонентов смеси в отдельности.

Поскольку тепловой эффект, сопровождающий процесс абсорбции, отрицательно сказывается на положении линии равновесия, он должен обязательно учитываться при расчетах. Количество теплоты, выделяющейся при абсорбции, может быть определено по зависимости

где qд - дифференциальная теплота растворения в пределах изменения концентрации х1 – х2; L – количество абсорбента.

Если абсорбция ведется без отвода теплоты, то можно допустить, что вся выделяющаяся теплота идет на нагревание жидкости, и температура последней повышается на величину

где с – теплоемкость раствора.

Для понижения температуры исходную газовую смесь и абсорбент охлаждают, отводя теплоту, выделяющуюся в процессе абсорбции, с помощью встроенных (внутренних) или наружных теплообменников.

Парциальное давление растворяемого газа в газовой фазе, соответствующее равновесию, может быть определено по закону Дальтона, согласно которому парциальное давление компонента в газовой смеси равно общему давлению, умноженному на мольную долю этого компонента в смеси, т. е.

где Р – общее давление газовой смеси; у – мольная концентрация распределяемого в смеси газа.

Сопоставляя уравнения (10.2) и (10.1), найдем

где Аравн = Е/Р – константа фазового равновесия, применимая для областей действия законов Генри и Дальтона.

Пусть Раб – давление паров чистого абсорбента в условиях абсорбции; раб – парциальное давление паров абсорбента в растворе; Р – общее давление; х – мольная доля абсорбируемого газа в растворе; у – мольная доля распределяемого газа в газовой фазе; уаб – мольная доля абсорбента в газовой фазе.

Согласно закону Рауля парциальное давление компонента в растворе равно давлению пара чистого компонента, умноженному на его мольную долю в растворе:

По закону Дальтона (10.2) парциальное давление абсорбента в газовой фазе равно

При равновесии

Анализ факторов, влияющих на равновесие в системах газ (пар) – жидкость, позволил установить, что к параметрам, улучшающим условия абсорбции, относятся повышенное давление и пониженная температура, а к факторам, способствующим десорбции, - пониженное давление, повышенная температура и введение в абсорбент добавок, уменьшающих растворимость газов в жидкостях.

Материальный баланс процесса абсорбции выражается дифференциальным уравнением

где G – поток газовой смеси (инертного газа), кмоль/с; L – поток абсорбента, кмоль/с; Yн и Yк – начальное и конечное содержание распределяемого вещества в газовой фазе, кмоль/кмоль инертного газа; Хк и Хн – начальное и конечное содержание распределяемого вещества в абсорбенте, кмоль/кмоль абсорбента; М – количество распределяемого вещества, перенесенного из фазы G в фазу L в единицу времени, кмоль/с.

Из уравнения материального баланса (10.9) можно определить необходимый общий расход абсорбента

Процесс абсорбции характеризуется также степенью извлечения (поглощения), представляющей отношение количества фактически поглощенного компонента к количеству, поглощаемому при полном его извлечении,

Кинетика процесса абсорбции характеризуется тремя основными стадиями, которые соответствуют схеме, представленной на рис. 9.4.

Первая стадия – перенос молекул абсорбируемого компонента из ядра потока газа (пара) к поверхности раздела фаз (поверхности жидкости).

Вторая стадия – диффундирование молекул абсорбируемого компонента через поверхностный слой жидкости (граница раздела фаз).

Третья стадия – переход молекул абсорбируемого вещества от поверхности раздела фаз в основную массу жидкости.

Кинетические закономерности абсорбции соответствуют общему уравнению массопередачи для двухфазных систем:

Экспериментально установлено, что вторая стадия процесса абсорбции идет с большей скоростью и не влияет на общую скорость процесса, ограниченную скоростью наиболее медленной стадии (первой или третьей).

Движущая сила процесса абсорбции для I и III стадий в уравнениях (10.5а) и (10.6а) может быть выражена через другие параметры:

В уравнениях (10.5б) и (10.6б) р – рабочее парциальное давление распределяемого газа в газовой смеси; рравн – равновесное давление газа над абсорбентом, соответствующее рабочей концентрации в жидкости; С – рабочая объемная мольная концентрация распределяемого газа в жидкости; Сравн – равновесная объемная мольная концентрация распределяемого газа в жидкости, соответствующая рабочему парциальному давлению его в газовой смеси.

При таком выражении движущей силы процесса абсорбции уравнение равновесной зависимости принимает вид

С = Ψр,

где Ψ – коэффициент пропорциональности, кмоль/(м3*Па).

Коэффициенты массопередачи выражаются для уравнений (10.5а) и (10.6а) в виде

для уравнений (10.5б) и (10.6б)

В уравнениях (10.7) и (10.8) βу, βр – коэффициенты массоотдачи от потока газа к поверхности контакта фаз; βх, β С - коэффициенты массоотдачи от поверхности контакта фаз к потоку жидкости.

Коэффициенты массоотдачи по газу и жидкости βу и βх могут быть определены из критериальных уравнений, имеющих вид:

для газовой фазы Nuдиф у = f *(Re, Prдиф у);

для жидкой фазы Nuдиф х = f *(Re, Prдиф х).

Величина коэффициента Ψ оказывает существенное влияние на кинетику процесса абсорбции. Если Ψ имеет высокие значения (высокая растворимость компонента – диффузионное сопротивление сосредоточено в газовой фазе), то 1/(βc*Ψ) < 1/βр или КР ≈ βр. Если Ψ мало (извлекаемый компонент трудно растворим – диффузионное сопротивление сосредоточено в жидкой фазе), то Ψ/βр << 1/βс и можно считать Кс ≈ βс

Так же, как для массоо6менных процессов при L/G = const, рабочие линии процесса абсорбции являются прямыми и описываются в случае противотока уравнением (9.4), а прямотока – уравнением (9.5).

Средняя движущая сила в уравнениях (10.5а) и (10.6а) определяется в случае прямолинейной равновесной зависимости через относительные мольные концентрации компонентов по зависимостям (9.6) и (9.7).

Эти же зависимости можно использовать и при выражении движущей силы процесса абсорбции через парциальные давления распределяемого компонента в газе или объемные мольные концентрации этого же компонента в жидкости в уравнениях (10.5б) и (10.6б)

Здесь Δрmax, Δрmin – большее и меньшее значения движущей силы в начале и конце процесса абсорбции, выраженные через разность парциальных давлений поглощаемого компонента; ΔСmax, ΔСmin – большее и меньшее значения движущей силы в начале и конце процесса абсорбции, выраженные через объемные мольные концентрации поглощаемого компонента в жидкости.

В случае Δpmax/Δpmin ≤ 2, ΔCmax/ΔCmin ≤ 2 при сохранении линейности равновесной зависимости средняя движущая сила процесса абсорбции может равняться среднеарифметическому этих значений.

При проведении процесса абсорбции, сопровождаемой химической реакцией (хемосорбция), протекающей в жидкой фазе, часть распределяемого компонента переходит в химически связанное состояние. В результате этого концентрация растворенного (физически связанного) распределяемого компонента в жидкости уменьшается, что приводит к увеличению движущей силы процесса по сравнению с чисто физической абсорбцией.

Скорость хемосорбции зависит как от скорости массопередачи, так и от скорости химической реакции. В этом случае различают диффузионную и кинетическую области протекания хемосорбции. В диффузионной области скорость процесса определяется скоростью массопередачи, в кинетической – скоростью химической реакции. В тех случаях, когда скорости массопередачи и реакции соизмеримы, процессы хемосорбции протекают в смешанной, или диффузионно-кинетической, области.

При расчете хемосорбции коэффициент массоотдачи в жидкой фазе, учитывающий протекающую в ней химическую реакцию β′х, может быть выражен через коэффициент массоотдачи при физической абсорбции βх с учетом фактора ускорения массообмена Фм, показывающего, во сколько раз увеличится скорость абсорбции за счет протекания химической реакции:

β′х = βх* Фм

Фактор Фм определяют по графическим зависимостям.

В технологических процессах наиболее широко используются, непрерывные процессы абсорбции.

При прямоточной схеме взаимодействия газа (пара) и жидкости (рис. 10.1) их потоки движутся параллельно друг другу.

При противоточной схеме взаимодействия газа (пара) и жидкости (рис. 10.2) их потоки движутся в противоположных направлениях.

Сопоставление условий проведения прямоточного и противоточного процессов абсорбции показывает, что противоточный процесс позволяет обеспечить более высокую конечную концентрацию поглощаемого вещества в абсорбенте и меньший расход абсорбента, но средняя движущая сила процесса при этом меньше, а следовательно, противоточные аппараты требуют большую поверхность контакта фаз, что часто связано с увеличением общих размеров самих аппаратов.

Схемы с рециркуляцией предусматривают частичный возврат в массоо6менный аппарат либо жидкости, либо газа. При этом рециркуляцию жидкости (рис. 10.3) осуществляют в том случае, если лимитирующей стадией процесса является переход вещества

от поверхности раздела фаз в жидкость, а рециркуляцию газа (рис. 10.4) – когда лимитирующей стадией является переход вещества из газовой фазы к поверхности раздела фаз.

При противоточной схеме абсорбции с рециркуляцией жидкости (см. рис. 10.3) газ проходит через аппарат снизу вверх, и концентрация распределяемого вещества в нем изменяется от Yн до Yк. Жидкость подводится к верхней части аппарата при концентрации распределяемого вещества Хн, затем смешивается с выходящей из аппарата жидкостью, в результате чего концентрация повышается до Хсм. Рабочая линия представляется на диаграмме отрезком прямой, крайние точки его имеют координаты Yн Хк и Yк, Хсм, соответственно. Величину Хсм легко найти из уравнения материального баланса.

Обозначим отношение количества поглощающей жидкости на входе в аппарат к количеству свежей поглощающей жидкости через n.

Тогда

При противоточной схеме абсорбции с рециркуляцией газа (пара) (см. рис. 10.4) поглощающая жидкость подводится к верхней части аппарата с концентрацией Х н, взаимодействует с восходящим газовым потоком и отводится из него с концентрацией Х к. Начальная концентрация поглощаемого компонента в газе - Y н конечная - Y к. После возвращения части выходящего газа и смешения его с исходным концентрация газовой смеси, направляемой в абсорбер, уменьшается и становится Y см. Положение рабочей линии определяют точки Yсм, Xк и Yк, Xн.

Обозначив отношение подаваемого в абсорбер газа к свежему очищаемому газу через n, запишем уравнение материального баланса

Важной особенностью схем с рециркуляцией жидкости и газ является увеличение скорости движения циркулирующей фазы через аппарат путем увеличения ее общего расхода, что приводи

к увеличению коэффициента массоотдачи (массопередачи) по этой фазе при некотором уменьшении движущей силы процесса.

При рециркуляции жидкости в ветви рециркулирующего абсорбента может быть установлен холодильник (см. рис. 10.3) для отвода выделяющейся в процессе теплоты, что позволяет интенсифицировать процесс абсорбции путем увеличения растворимости газа.

Десорбция – процесс выделения поглощенного газа из абсорбента, который производят с целью регенерации поглотителя для его повторного использования либо получения ранее уловленного компонента в чистом виде.

Десорбция может осуществляться:

· отгонкой в токе инертного газа и водяного пара, который приводят в соприкосновение с раствором после проведения процесса абсорбции. В качестве инертного газа может использоваться воздух, в который выделяется поглощенный компонент. Поскольку последующее разделение инертного газа и компонента затруднительно, данный метод применяют в тех случаях, когда извлеченный из абсорбента компонент в дальнейшем не используется.

Водяной пар как десорбирующий агент применяют для извлечения нерастворимых в воде газов. При этом смесь десорбированного газа и водяного пара из десорбера направляют в конденсатор, в котором происходит отделение газа от водяного пара путем конденсации последнего. Если же температура кипения десорбированного компонента высока, то его конденсируют совместно с водяным паром и затем отделяют от воды отстаиванием;

· нагреванием абсорбента, которое приводит к смещению равновесия в сторону десорбции и испарению десорбируемого компонента. Поскольку вместе с извлекаемым компонентом частично испаряется сам абсорбент, в дальнейшем требуется дополнительное разделение образующейся смеси;

· снижением давления над абсорбентом до атмосферного, если абсорбция проводилась при избыточном давлении, и вакуумированием с отсасыванием выделившегося компонента, если абсорбция проводилась при атмосферном давлении.

В ряде случаев для более полной регенерации абсорбента два последних способа объединяют вместе, а также применяют процесс ректификации.

<== предыдущая лекция | следующая лекция ==>
Модифицированные уравнения массопередачи | Конструкции абсорберов
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 2298; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.