КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Галопирующие колебания вагона
Галопирующие колебания – это вращательные колебания вокруг горизонтальной оси Y, перпендикулярной бортам вагона и проходящей через центр масс вагона. При этом движение вагона подобно галопу лошади. Колебания обусловлены упругими силами подвески и инертностью вагона. Пусть из-за случайного толчка, например на стыке рельсов или при падении груза, корпус вагона наклонился. Пусть при этом пружины передней вагонной тележки сжались, а задней тележки – растянулись. Возникает момент упругих сил пружин подвески, стремящийся вернуть вагон в положение равновесия. Но вагон по инерции проходит положение равновесия, поворачиваясь в противоположном направлении. Потом движение повторяется в обратном направлении, и таким образом возникают галопирующие колебания. Определим период галопирующих колебаний. Так как это вращательные колебания, то для вывода применим основной закон динамики вращательного движения: произведение момента инерции вагона относительно оси вращения на угловое ускорение равно моменту упругих сил подвески: J ε = М. Получим формулу для момента силы, который создают пружины подвески. По закону Гука упругие силы пружин пропорциональны деформации пружин и направлены противоположно деформации F = –kx. Так как передняя подвеска сжата, то ее сила упругости направлена вертикально вверх, а сила упругости растянутой задней подвески – вниз (рис. 14.4). Момент пары упругих сил подвески F равен произведению силы на плечо пары сил: M = F l, где плечо l равно расстоянию между линиями действия сил, то есть между серединами передней и задней вагонных тележек. Деформация пружин х связана с углом поворота вагона как длина дуги с центральным углом:
.
Подставив в закон динамики вращательного движения формулу момента силы, получим дифференциальное уравнение галопирующих колебаний
Здесь угловое ускорение записано как вторая производная от угла поворота по времени. Решением этого дифференциального уравнения должна быть функция, у которой вторая производная имеет такой же вид, как и сама функция, но противоположного знака. Например, это может быть функция косинуса
α= α 0 cos ω t, (14.15)
где α 0 – амплитуда колебаний, ω – циклическая частота колебаний. Если определить вторую производную от угла поворота по времени
Здесь k –– коэффициент упругости пружин подвески, принятый одинаковым для передней и задней вагонных тележек, J – момент инерции вагона.
Дата добавления: 2014-01-04; Просмотров: 3877; Нарушение авторских прав?; Мы поможем в написании вашей работы! |