Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правила Кирхгофа для разветвленных цепей

Обобщенный закон Ома (см. (100.3)) по­зволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источни­ков э.д.с. и т. д.), довольно сложен. Эта задача решается более просто с помощью двух правил Кирхгофа.

Любая точка разветвления цепи, в ко­торой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положитель­ным, а ток, выходящий из узла,— отрица­тельным.

Первое правило Кирхгофа: алгебраи­ческая сумма токов, сходящихся в узле, равна нулю:

Например, для рис. 148 первое правило Кирхгофа запишется так:

I 1- I 2+ I 3- I 4- I 5=0.

Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке про­водника и ни на одном его участке не должны накапливаться электрические за­ряды. В противном случае токи не могли бы оставаться постоянными.

Второе правило Кирхгофа получается из обобщенного закона Ома для разветвлен­ных цепей. Рассмотрим контур, состоящий

 

из трех участков (рис. 149). Направление обхода по часовой стрелке примем за по­ложительное, отметив, что выбор этого на­правления совершенно произволен. Все токи, совпадающие по направлению с на­правлением обхода контура, считаются по­ложительными, не совпадающие с на­правлением обхода — отрицательными. Источники э.д.с. считаются положительны­ми, если они создают ток, направленный в сторону обхода контура. Применяя к участкам закон Ома (100.3), можно записать:

Складывая почленно эти уравнения, по­лучим

I 1 R 1 -I 2 R 2 +I 3 R 3 = ξ 1 - ξ 2 + ξ 3. (101.1)

Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в развет­вленной электрической цепи, алгебраиче­ская сумма произведений сил токов Ii, на сопротивления Ri соответствующих участков этого контура равна алгебраиче­ской сумме э.д.с. ξ k, встречающихся в этом контуре:

При расчете сложных цепей постоян­ного тока с применением правил Кирхгофа необходимо:

1. Выбрать произвольное направление токов на всех участках цепи; действитель­ное направление токов определяется при решении задачи: если искомый ток полу­чится положительным, то его направление было выбрано правильно, отрицатель­ным — его истинное направление противо­положно выбранному.

2. Выбрать направление обхода кон­тура и строго его придерживаться; про­изведение IR положительно, если ток на данном участке совпадает с направлением обхода, и наоборот, э.д.с., действующие по выбранному направлению обхода, счита­ются положительными, против — отрица­тельными.

3. Составить столько уравнений, что­бы их число было равно числу искомых величин (в систему уравнений должны входить все сопротивления и э.д.с. рас­сматриваемой цепи); каждый рассматри­ваемый контур должен содержать хотя бы один элемент, не содержащийся в преды­дущих контурах, иначе получатся уравне­ния, являющиеся простой комбинацией уже составленных.

В качестве примера использования правил Кирхгофа рассмотрим схему (рис. 150) измери­тельного моста Уитстона. Сопротивления R 1, R 2, R 3 и R 4 образуют его плечи. Между точками А и В моста включена батарея с э.д.с. ξ и со­противлением r, между точками С и D включен гальванометр с сопротивлением RG. Для узлов А, В и С, применяя первое правило Кирхгофа, получим

Для контуров АСВ ξ А, ACDA и CBDC, соглас­но второму правилу Кирхгофа, можно запи­сать:

Если известны все сопротивления и э.д.с., то, решая полученные шесть уравнений, можно найти неизвестные токи. Изменяя известные сопротивления R 2, R 3 и R 4, можно добиться того, чтобы ток через гальванометр был равен нулю (IG=0). Тогда из (101.3) найдем

I 1= I 2, I 3 = I 4, (101.5)

а из (101.4) получим

I 1 R 1= I 4R4, I 2 R 2= I 3 R 3. (101.6) Из (101.5) и (101.6) вытекает, что

R 1/ R 4= R 2/ R 3, или R 1= R 2 R 4/ R 3 (101.7)

Таким образом, в случае равновесного моста (IG=0) при определении искомого сопротивле­ния R 1 э.д.с. батареи, сопротивления батареи и гальванометра роли не играют.

На практике обычно используется реохордный мост Уитстона (рис. 151), где сопротивле­ния R 3 и R4 представляют собой длинную одно­родную проволоку (реохорд) с большим удель­ным сопротивлением, так что отношение R 3 /R 4 можно заменить отношением l 3/ l 4. Тогда, ис­пользуя выражение (101.7), можно записать

R 1 =R 2 l 4 /l 3. (101.8)

 

Длины l 3 и l 4 легко измеряются по шкале, a R 2 всегда известно. Поэтому уравнение (101.8) позволяет определить неизвестное со­противление R 1.

 

 

<== предыдущая лекция | следующая лекция ==>
Закон Ома для неоднородного участка цепи | Электрические токи в металлах, вакууме и газах
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 446; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.