Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Логические элементы

Логические элементы.

 

 

 

Логические элементы широко применяются в автоматике, вычислительной технике и цифровых измерительных приборах.

Логические элементы создают на базе электронных устройств, работающих в ключевом режиме – на диодах, транзисторах.

Логическим элементом называется физическое устройство, реализующее какую-либо из функций алгебры логики (булевой алгебры) над переменными (аргументами), поступающими на его входы.

Аргументы и функции представляются в двоичной форме: в виде нулей и единиц. Высокий уровень сигнала соответствует логической единице (1), а низкий – логическому нулю (0).

Любую логическую функцию удобно представить в виде таблицы состояний (таблицы истинности), где указываются возможные комбинации аргументов и соответствующие им функции.

Для логического элемента с двумя входами можно реализовать следующие функции:

 

 

Логическая функция (операция) Обозначение логической операции Тип элемента Таблица истинности Условное Изображение
x 1        
x 2        
Логическое Отрицание х1, Инверсия х1 ù x Элемент НЕ (инвертор) x        
       
Логическое умножение, Конъюнкция x 1· x 2 x 1 x 2 x 1Ù x 2 x 1& x 2 Элемент И (конъюнктор) x 1· x 2        
Логическое сложение, Дизъюнкция x 1+ x 2 x 1Ú x 2 Элемент ИЛИ (дизъюнктор) x 1+ x 2        
Штрих Шеффера, Отрицание конъюнкции _____ x 1· x 2 x 1½ x 2   Элемент И-НЕ (элемент Шеффера) ____ x 1· x 2        
Стрелка Пирса, функция Вебба, Отрицание дизъюнкции _____ x 1+ x 2 x 1¯ x 2   Элемент ИЛИ-НЕ (элемент Пирса) ____ x 1+ x 2        
Запрет __ x 1· x 2 Запрет x2        
Импликация __ x 1+ x 2 Импликация от x2 к x1        
Исключающее ИЛИ x 1Å x 2   Исключающее ИЛИ (неравнозначность, сложение по модулю 2) x 1Å x 2        
Равнозначность x 1~ x 2 Равнозначность (эквивалентность) x 1~ x 2        

 

Система логических функций называется функционально полной, если используя только эти функции можно реализовать любые другие. Функционально полными являются системы:

1) “и”, ”или”, ”не”,

2) “и”, ”не”,

3) “или”, ”не”.

Это можно доказать, используя законы булевой алгебры.

 

Законы булевой алгебры.

 

 

  Аксиомы (тождества)   Их можно проверить подставляя вместо х 0 или 1.   1+ х =1 0+ х = х х + х = х х +=1 = х х =0 1· х = х х · х = х х ·=0
Законы коммутативности логические переменные при операциях логического умножения и логического сложения можно менять местами     х 1+ х 2= х 2+ х 1 х 1· х 2= х 2· х 1
Законы ассоциативности Если в логическом выражении используются только операции логического умножения или только операции логического сложения, то можно пренебрегать скобками или произвольно их расставлять   х 1+ х 2+ х 3= х 1+(х 2+ х 3) х 1· х 2· х 3= х 1·(х 2· х 3)
Законы дистрибутивности   можно выносить за скобки как общие множители, так и общие слагаемые x 1·(х 2+ х 3)=(х 1· х 2)+(х 1· х 3) x 1+(х 2· х 3)=(х 1+ х 2)·(х 1+ х 3)
Законы дуальности (теоремы де Моргана) Любые логические функции могут быть построены с использованием только элементов "И-НЕ" или только элементов "ИЛИ-НЕ". Переход от операции "И" к операции "ИЛИ", а также обратный переход осуществляется с помощью законов дуальности (теорема де Моргана):     =
Законы поглощения х1 поглощает х2 х 1+ х 1· х 2= х 1 х 1·(х 1+ х 2)= х 1

 

В базовых элементах одной серии используется одинаковая микросхемная реализация. Серия характеризуется общими электрическими, конструктивными и технологическими параметрами.

 

 

<== предыдущая лекция | следующая лекция ==>
Транзисторный каскад с общим эмиттером | Микросхемная реализация логических элементов
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 289; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.