Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Возбужденные состояния ядер




Возбуждение ядра – сообщение ядру дополнительной энергии, в результате чего увеличивается его внутренняя энергия, и ядро переходит из основного состояния в возбужденное. Ядро является квантовой системой взаимодействующих нуклонов и имеет строго определенный и дискретный набор разрешенных энергетических состояний. Уровни возбуждения бывают одночастичными и коллективными. Наименьшее количество энергии, которое может поглотить ядро, соответствует его первому возбужденному уровню. Переход на первый возбужденный уровень у легких ядер чаще всего представляет собой переход одного нуклона в ближайшее незанятое состояние. У тяжелых ядер переход на первый возбужденный уровень обычно связан с возбуждением колебаний всего ядра или вращением ядра как целого, то есть с проявлением коллективного взаимодействия нуклонов в ядре.

На рис.1.7.1 изображены типичные схемы возбужденных уровней легкого и тяжелого ядер. Система энергетических уровней ядра называется энергетическим спектром ядра. Энергия каждого уровня обозначается слева, а спин и четность (см. §1.8) данного состояния справа. Совокупность значений этих величин называется характеристикой уровня. Первый возбужденный уровень E 1 легких ядер (А < 50) расположен при энергии ~ 1 МэВ, у тяжелых (А > 200) ~ 0,1 МэВ. Спины ядер в возбужденных состояниях могут отличаться от спинов в основном состоянии.

Все возбужденные уровни не являются строго моноэнергетическими, а имеют конечную ширину Г, которая связана со средним временем t жизни ядра в данном возбужденном состоянии соотношением неопределенностей:

(1.7.1)

Типичная величина t ~ 10-14 с. Этому значению t соответствует Г ~ 0,1 эВ. Однако бывают величины t и Г на много отличающиеся от этих. Следует подчеркнуть, что среднее время жизни ядра в возбужден­ном состоянии велико по сравнению с характерным временем ядерного взаимодействия (~ 10-23 с, см. (1.9.17)), то есть по ядерным масштабам времени возбужденное ядро живет весьма долго.

На рис. 1.7.1 (в кружке) показана в увеличенном виде структура уровней. Распределение W(E) представляет собой плотность вероятности образования возбужденного состояния ядра от энергии. Ширина уровня Г определяется на половине высоты этого распределения.

Понятие уровня, а тем самым и его характеристики, имеют смысл до тех пор, пока ширина Г уровня не превышает расстояния D между соседними уровнями, т.е. пока уровни не перекрываются. Поэтому условие существования уровня имеет следующий вид:

. (1.7.2)

При выполнении условия (1.7.2) характеристики стабильных ядер можно вводить и для нестабильных ядер, а также для стабильных ядер, находящихся в возбужденном состоянии.

С ростом энергии возбуждения расстояние между уровнями в среднем экспоненциально уменьшается. Одновременно уменьшается среднее время жизни τ уровня и в соответствии с (1.7.1) растет ширина уровней Г. В результате при некоторых значениях энергии возбуждения ширина уровней становится сравнимой с расстоянием между соседними уровнями и при дальнейшем увеличении энергии возбуждения уровни сольются и станут, а энергетический спектр ядра в этой области энергий становится сплошным. Для тесно расположенных уровней можно говорить о плотности уровней - числе уровней, приходящихся на единичный интервал энергии.

Если энергия возбуждения ядра меньше энергии связи нуклона, то переход в основное состояние происходит с испусканием g - кванта, или последовательного каскада g - квантов, которые уносят из ядра энергию возбуждения. Так как интенсивность электромагнитных сил (см. §1.9 п.3) много меньше ядерных, то и процессы под их действием протекают существенно медленнее. Поэтому, если энергия возбуждения превышает энергию отделения нуклона, то переход в основное состояние будет происходить преимущественно с испусканием нуклона (чаще всего нейтрона, так как для него отсутствует кулоновский барьер). При этом надо помнить, что возникающее конечное ядро не имеет ничего общего с начальным ядром.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 799; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.