Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Числовые характеристики двумерных случайных величин




Некоторые числовые характеристики одномерных случайных величин: начальные и центральные моменты, мода, медиана, квантиль, коэффициенты асимметрии и эксцесса. Числовые характеристики двумерных случайных величин: начальные и центральные моменты. Корреляционный момент и коэффициент корреляции. Коррелированность и зависимость случайных величин.

Лекция 9.

Двумерные случайные величины.

Случайные векторы (системы нескольких случайных величин). Закон распределения веро-ятностей дискретной двумерной случайной величины. Функция распределения и плот-ность распределения двумерной случайной величины, их свойства. Вероятность попада-ния случайной точки в произвольную область. Отыскание плотностей вероятности со-ставляющих двумерной случайной величины. Равномерное распределение на плоскости.

Лекция 8.

Наряду с одномерными случайными величинами, возможные значения которых определяют-ся одним числом, теория вероятностей рассматривает и многомерные случайные величины. Каждое возможное значение такой величины представляет собой упорядоченный набор нескольких чисел. Геометрической иллюстрацией этого понятия служат точки п -мерного пространства, каждая координата которых является случайной величиной (дискретной или непрерывной), или п -мерные векторы. Поэтому многомерные случайные величины называют еще случайными векторами.

 

1. Дискретные двумерные случайные величины.

 

Закон распределения дискретной двумерной случайной величины (Х, Y) имеет вид таблицы с двойным входом, задающей перечень возможных значений каждой компоненты и вероятности p (xi, yj), с которыми величина принимает значение (xi, yj):

Y Х
x 1 x 2 xi xn
y 1 p (x 1, y 1) p (x 2, y 1) p (xi, y 1) p (xn, y 1)
yj p (x 1, yj) p (x 2, yj) p (xi, yj) p (xn, yj)
ym p (x 1, ym) p (x 2, ym) p (xi, ym) p (xn, ym)

 

При этом сумма вероятностей, стоящих во всех клетках таблицы, равна 1.

Зная закон распределения двумерной случайной величины, можно найти законы распреде-ления ее составляющих. Действительно, событие Х = х 1 представляется собой сумму несовместных событий (X = x 1, Y = y 1), (X = x 1, Y = y 2),…, (X = x 1, Y = ym), поэтому

р (Х = х 1) = p (x 1, y 1) + p (x 1, y 2) +…+ p (x 1, ym) (в правой части находится сумма вероятностей, стоящих в столбце, соответствующем Х = х 1). Так же можно найти вероятности остальных возможных значений Х. Для определения вероятностей возможных значений Y нужно сложить вероятности, стоящие в строке таблицы, соответствующей Y = yj.

Пример 1. Дан закон распределения двумерной случайной величины:

Y X
-2    
-0,8 0,1 0,3 0,1
-0,5 0,15 0,25 0,1

 

Найти законы распределения составляющих.

Решение. Складывая стоящие в таблице вероятности «по столбцам», получим ряд распре-деления для Х:

Х -2    
р 0,25 0,55 0,2

 

Складывая те же вероятности «по строкам», найдем ряд распределения для Y:

Y -0,8 -0,5
p 0,5 0,5

 

Определение 9.1. Начальным моментом порядка k случайной величины Х называется матема-тическое ожидание величины Xk:

ν k = M (Xk). (9.1)

В частности, ν1 = М (Х), ν2 = М (Х 2). Следовательно, дисперсия D (X) = ν2 – ν1².

Определение 9.2. Центральным моментом порядка k случайной величины Х называется мате-матическое ожидание величины (Х – М (Х)) k:

μ k = M ((Х – М (Х)) k). (9.2)

В частности, μ1 = M (Х – М (Х)) = 0, μ2 = M ((Х – М (Х))2) = D (X).

Можно получить соотношения, связывающие начальные и центральные моменты:

Мода и медиана.

Такая характеристика случайной величины, как математическое ожидание, называется иногда характеристикой положения, так как она дает представление о положении случайной величии-ны на числовой оси. Другими характеристиками положения являются мода и медиана.

Определение 9.3. Модой М дискретной случайной величины называется ее наиболее вероятное значение, модой М непрерывной случайной величины – значение, в котором плотность вероятности максимальна.

Пример 1.

Если ряд распределения дискретной случайной величины Х имеет вид:

Х        
р 0,1 0,7 0,15 0,05

то М = 2.

Пример 2.

Для непрерывной случайной величины, заданной плотностью распределения , модой является абсцисса точки максимума: М = 0.

Замечание 1. Если кривая распределения имеет больше одного максимума, распределение называется полимодальным, если эта кривая не имеет максимума, но имеет минимум – анти-модальным.

Замечание 2. В общем случае мода и математическое ожидание не совпадают. Но, если распре-деление является симметричным и модальным (то есть кривая распределения симметрична от-носительно прямой х = М) и имеет математическое ожидание, оно совпадает с модой.

Определение 9.4. Медианой Ме непрерывной случайной величины называют такое ее значение, для которого

p (X < Me) = p (X > Me). (9.3)

Графически прямая х = Ме делит площадь фигуры, ограниченной кривой распределения, на две равные части.

Замечание. Для симметричного модального распределения медиана совпадает с математичес-ким ожиданием и модой.

Определение 9.5. Для случайной величины Х с функцией распределения F (X) квантилью порядка р (0 < p < 1) называется число Кр такое, что F (Kp) ≤ p, F (Kp + 0) ≥ p. В частности, если F (X) строго монотонна, Кр: F (Kp) = p.

Такие характеристики, как начальные и центральные моменты, можно ввести и для системы двух случайных величин.

Определение 9.8. Начальным моментом порядка k, s двумерной случайной величины (Х, Y) называется математическое ожидание произведения Xk на Ys:

α k,s = M (XkYs). (9.6)

Для дискретных случайных величин для непрерывных случайных величин

Определение 9.9. Центральным моментом порядка k, s двумерной случайной величины (Х, Y) называется математическое ожидание произведения (X – M (X)) k на (Y – M (Y)) s:

μ k,s = M ((X – M (X)) k (Y – M (Y)) s). (9.7)

Для дискретных случайных величин для непрерывных случайных величин

При этом М (Х) = α1,0, M (Y) = α0,1, D (X) = μ2,0, D (Y) = μ0,2.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1309; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.