Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференцирование сложной функции. Пусть — функция двух переменных, каждая из которых, в свою очередь, является функцией независимых переменных и :




Пусть — функция двух переменных, каждая из которых, в свою очередь, является функцией независимых переменных и : , . Тогда — сложная функция двух независимых переменных и , а переменные и — промежуточные аргументы.

 

Теорема. Если функция дифференцируема в точке , а функции и дифференцируемы в точке D, то сложная функция , где ; , дифференцируема в точке D, причем ее частные производные вычисляются по формулам:

, .

Доказательство. Докажем первую из формул. В точке переменной дадим приращение , сохранив постоянной. Тогда функции и получат частные приращения , , а функция — полное приращение (так как и — приращения по обоим промежуточным аргументам). Функция дифференцируема в точке , поэтому ее приращение в этой точке представимо в виде

.

 

Разделим данное равенство на :

(1)

 

Если , то и в силу непрерывности функций и ,

, .

 

Переходя к пределу в равенстве (1) с учетом того, что

, имеем

 

.

 

Аналогично

.

 

Теорема доказана.

 

Рассмотрим функцию трех переменных , каждая из которых, в свою очередь, является функцией независимых переменных , , : , , . Тогда функция является сложной функцией трех независимых переменных , , , а переменные , , называются промежуточными. Частные производные этой функции вычисляются по формулам:

,

,

.

Пример. Вычислить частные производные сложной функции двух переменных , где ; .

Решение. Найдем частные производные

, , , , , . Следовательно,

.

Найдем теперь полный дифференциал сложной функции в точке . Подставим выражения и в формулу полного дифференциала сложной функции двух переменных

. (2)

Получим

или

 

Так как , , то

. (3)

 

Сравнивая формулы (2) и (3), замечаем, что форма записи полного дифференциала функции двух переменных не зависит от того, являются ли и независимыми переменными, или функциями других независимых переменных. В этом и заключается инвариантность формы первого дифференциала функции нескольких переменных. (Напомним, что первый дифференциал функции одной переменной также обладает этим свойством.)





Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 794; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.