Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Распределение зарядов в проводнике

 

Проводниками называют тела с высокой концентрацией свободных заряженных частиц, способных перемещаться под действием электрического поля. Если сообщить проводнику некоторый избыточный заряд, то составляющие его свободные заряженные частицы будут перемещаться (положительные - в область с меньшим потенциалом, отрицательные - наоборот) до тех пор, пока потенциалы во всех точках проводника не станут одинаковыми. При этом достигается состояние, когда внутри проводника напряженность равна нулю, а на поверхности векторы напряженности перпендикулярны к ней. Если выбрать внутри проводника замкнутую поверхность S, которая очень близка к поверхности проводника (рис. 37.1), то в соответствии с теоремой Гаусса поток вектора напряженности через эту поверхность будет равен нулю. Это означает, что внутри нее заряд отсутствует и весь избыточный заряд распределяется по внешней поверхности проводника. Выясним, от чего зависит поверхностная плотность заряда.

 

 

 

Для этого рассмотрим два металлических шарика, соединенных тонкой проволокой (рис. 37.2). Шарики и проволока составляют единый проводник и потому потенциалы их одинаковы во всех точках. Потенциал первого шарика равен , площадь его поверхности . Выразим заряд и поверхностную плотность заряда на поверхности этого шарика:

 

; .

 

Аналогичные выражения получаются для второго шарика:

 

; .

 

Разделив выражения для плотностей заряда, находим

 

. (37.1)

 

Заряд, сообщенный проводнику, распределяется по внешней поверхности проводника, при этом поверхностная плотность заряда обратно пропорциональна радиусу поверхности.

Величина, обратная радиусу поверхности в данной ее точке, называется кривизной поверхности. Там, где меньше радиус, кривизна поверхности больше, и наоборот. У выступов и заострений кривизна поверхности максимальна, согласно выражению (37.1) там будет максимальна и поверхностная плотность заряда.

Таким образом, приходим к заключению:

- все точки внутри и на поверхности заряженного проводника имеют одинаковый потенциал,

- сообщенный проводнику заряд распределяется на внешней поверхности проводника,

- линии напряженности электростатического поля проводника перпендикулярны его поверхности.

 

<== предыдущая лекция | следующая лекция ==>
| Распределение зарядов в проводнике

Дата добавления: 2014-01-05; Просмотров: 535; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.162.91.86
Генерация страницы за: 0.101 сек.