Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частные производные и дифференцируемость функции




1. Частные производные первого порядка. Пусть функция определена в области и . Тогда при малых определено ее частное приращение по : .

Определение. Частной производной функции по переменной в точке называют предел

,

если он существует.

Частную производную по обозначают одним из следующих символов:

.

Аналогично определяется частная производная по и вводятся ее обозначения.

Легко видеть, что частная производная – это производная функции одной переменной, когда значение другой переменной фиксировано. Поэтому частные производные вычисляются по тем же правилам, что и вычисление производных функций одной переменной.

Пример. Найти частные производные функции .

Имеем:

, . ▲

2. Частные производные высших порядков. Рассматривая частные производные и как функции от , приходим к понятиям частных производных второго порядка. А именно, выражения

,

называют частными производными второго порядка функции по и по соответственно, а выражения

,

смешанными частными производными второго порядка функции . Их обозначают также символами: , , и . Аналогично определяют частные производные 3-го порядка (их будет 8=23 ), 4-го порядка (их будет 16=24 ) и т.д.

Теорема 4. Если в некоторой окрестности точки функция имеет смешанные частные производные и , причем эти производные непрерывны в точке , то они равны в этой точке:

=.

Если последнее равенство выполняется, то говорят, что смешанные частные производные 2-го порядка функции не зависят от порядка дифференцирования в точке .

Теорема 4 допускает обобщение: по индукции ее можно распространить на любые непрерывные смешанные частные производные.

3. Дифференцируемость функции. Пусть . Составим полное приращение функции в точке :

.

Определение. Функция называется дифференцируемой в точке , если ее полное приращение в этой точке можно представить в виде

, (1)

где и – некоторые числа, при , .

Другими словами, функция дифференцируема в точке , если ее приращение эквивалентно функции : при . Выражение в этом случае представляет собой главную часть приращения , линейно зависящую от и .

Определение. Если функция дифференцируема в точке , то главную линейную часть ее приращения называют полным дифференциалом в точке и обозначают в виде

.

Для независимых переменных и полагают и . Поэтому полный дифференциал записывают также в виде

.

Формула (1) показывает, что, как и в случае функции одной переменной, верна

Теорема 5. Если функция дифференцируема в точке , то она непрерывна в этой точке.

Обратное утверждение неверно, т.е. непрерывность является только необходимым, но не достаточным условием дифференцируемости функции. Покажем это.

Пример. Найдем частные производные функции :

.

Полученные формулы теряют смысл в точке .

Можно показать иначе, что функция не имеет частных производных в точке . В самом деле, . Эта функция одной переменной , как известно, не имеет производной в точке . Последнее и означает, что частная производная в точке не существует. Аналогично, не существует частная производная . При этом функция , очевидно, непрерывна в точке . ▲

Итак, мы показали, что непрерывная функция может не иметь частных производных. Осталось установить связь между дифференцируемостью и существованием частных производных.

4. Связь между дифференцируемостью и существованием частных производных. Напомним, что для функции одной переменной существование производной в точке является необходимым и достаточным условием дифференцируемости функции в этой точке. Для функции многих переменных дифференцируемость и существование частных производных не являются эквивалентными свойствами функции.

Теорема 6 (необходимое условие дифференцируемости). Если функция дифференцируема в точке , то она имеет в точке частные производные по каждой переменной и .

При этом , , где и – числа из равенства (1). Поэтому условие дифференцируемости (1) можно записать в виде

,

а полный дифференциал функции – в виде

.

Обратная теорема не верна, т.е. существование частных производных не является достаточным условием дифференцируемости функции.

Теорема 7 (достаточное условие дифференцируемости). Если функция имеет непрерывные частные производные и в точке , то она дифференцируема в точке (и ее полный дифференциал в этой точке выражается формулой ).

Обратная теорема не верна, т.е. непрерывность частных производных является только достаточным, но не необходимым условием дифференцируемости функции.

5. Геометрический смысл дифференцируемости функции. Напомним, что для функции одной переменной из дифференцируемости функции в точке следует существование касательной к графику функции в точке .

Рассмотрим непрерывную функцию двух переменных , . График этой функции, т.е. множество точек , представляет собой поверхность в пространстве . Пусть плоскость проходит через точку поверхности ; – произвольная (текущая) точка поверхности ; – ос

 
 

нование перпендикуляра, проведенного из точки к плоскости (рис. 6).

Рис. 6.

Определение. Плоскость , проходящая через точку поверхности , называется касательной плоскостью к поверхности в этой точке, если при () величина является бесконечно малой более высокого порядка, чем , т.е. .

Теорема 8. Если функция дифференцируема в точке , то в точке существует касательная плоскость к поверхности (графику этой функции), причем уравнение касательной плоскости имеет вид

.

Вектор нормали к касательной плоскости, т.е. , называется вектором нормали (или нормалью) к поверхности в точке .

Пример. Составить уравнение касательной плоскости к параболоиду в точке и найти нормаль к параболоиду в этой точке.

Пусть – точка на плоскости . Так как , , то , . Учитывая также, что , получаем искомое уравнение касательной плоскости:

, или .

Вектор является нормалью к параболоиду в точке . ▲




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 473; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.034 сек.