Студопедия

КАТЕГОРИИ:


Загрузка...

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

МЕТОДИКА ИЗУЧЕНИЯ ЧИСЛОВЫХ ВЫРАЖЕНИЙ И ВЫРАЖЕНИЙ С ПЕРЕМЕННОЙ

МЕТОДИКА ИЗУЧЕНИЯ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА

Числовыми выражениями называется запись, состоящая из чисел, знаков действия и скобок.

Ознакомление с числовыми выражениями предполагает 3 этапа:

1. Числовые выражения, составленные с помощью только одного действия – сложения, вычитания, умножения, деления: 5+2, 7- 4, 2*3, 10:5 и т.д.

2. Числовые выражения, составленные с помощью двух действий одной и той же ступени (сложение и вычитание – 1ступень, умножение и деление – 2ступень) и скобок: 5+2-3, 10- (3+4), 6*4:8, 36: (2*3) и т.д.

3. Числовые выражения, составленные с помощью действий разных ступеней и скобок: (27+3):10, (5+3)*2, 5*3+7, 20:4- 3 и т.д.

Цели:

1. Сформировать умение читать, записывать и сравнивать числовые выражения.

2. Познакомить с правилами выполнения действий со скобками и действий разных ступеней.

3. Выработать умение находить значение числового выражения.

4. Познакомить с тождественными преобразованиями.

Умение читать, записывать и сравнивать числовые выражении формируется в процессе работы над соответствующими операциями над числами:

§ Действие сложения связано с операцией объединения множеств.

§ Действие вычитания связано с операцией дополнения подмножеств.

Поэтому сначала дети читают выражения так: 2+1 – к двум прибавить один,

2- 1 – от двух отнять один.

После знакомства со свойствами арифметических действий: прибавить 1 – это значит увеличить число на 1, вычесть 1- уменьшить число на 1, дети читают так:

2+1 – два увеличить на 1.

2-1 – два уменьшить на 1.

Затем дети знакомятся с действием сложения, названием знака действия и названием чисел. Меняется и прочтение: 2+1 – два плюс один.

2+1 – сумма двух и одного.

2+1 – первое слагаемое 2, второе 1.

Учащиеся должны осознать, что записать сумму, это значит записать выражение с помощью соответствующего знака действия, а вычислить сумму – значит найти значение выражения, найти результат.

Для усвоения термина «сумма» используются задания:

§ Запиши сумму чисел восьми и двух.

§ Вычисли значение суммы пяти и трёх.

§ Прочитай запись 7+2.

§ Замени число 10 суммой двух чисел.

§ Сравните суммы чисел 5+3 и 4+6.

В дальнейшем дети изучают другие арифметические действия, название знаков действии и чисел. Возможны варианты прочтения:

7+4 – к 7 прибавить 4. 7-4 – из 7 вычесть 4.

- 7 увеличить на 4. - 7 уменьшить на 4.

- 7 плюс 4. – 7 минус 4.

- сумма 7 и 4. – разность 7 и 4.

- первое слагаемое 7, второе слагаемое 4. – уменьшаемое 7, вычитаемое 4.

7*4 –по 7 взять 4 раза. 16:2 – 16 уменьшили в 2 раза.

- 7 увеличить в 4 раза. - 16 разделить на 2.



-7умножить на 4. – частное 16 и 2.

- произведение 7 и 4. – делимое 16. делитель 2.

- первый множитель 7, второй множитель 4.

Затем рассматриваются выражения из трёх и более чисел, соединённых знаками действий одной ступени (5+4-3, 7-4+5). Учитель раскрывает смысл этих выражений, показывает, как найти их значение. Находя их значение, дети узнают о порядке действий и прочтении.

Знакомство с выражениями, содержащими скобки, может проходить так:

§ Учитель сразу учит детей читать готовые выражения по аналогии с образцом.

§ Учитель вместе с детьми составляет выражения.

Учитель предлагает из карточек с числами и знаками действий составить выражения, прочесть их и найти их значения. Например,, или .Затем составляются новые выражения из карточек,,,,,. Например, или.

Для чтения используется памятка:

1. Посмотри на знак действия в скобках. Что записано – сумма или разность?

2. Посмотри на другой знак, вне скобок и скажи, что надо сделать.

Например, 10-(5+4) – разность десяти и суммы чисел пяти и четырёх.

- из 10 вычесть сумму чисел 5 и 4.

(6-4)+8 – сумма разности чисел шести и четырёх.

- к разности чисел 6 и 4 прибавить число 8.

Затем изучаются выражения, в которых одно или несколько слагаемых суммы заменены произведением или частным.

При знакомстве с такими выражениями учитель предлагает записать сумму 24 и 16, получают 24+16. После этого надо заменить первое слагаемое произведением, появляется запись 4*6+16, заменить второе слагаемое 24+2*8, заменить оба слагаемых 4*6+2*8. Далее выясняется, какое действие выполняется последним, и как называются компоненты этого действия. Прочтение может быть таким:

4*6+16 – сумма произведения 4 и 6 и числа 16,

- к произведению 4 и 6 прибавить 16,

- первое слагаемое представлено произведением 4 и 6, второе слагаемое – 16.

Изучение правил порядка выполнения действий в выражениях.

1. Сначала рассматривается порядок выполнения действий в выражениях без скобок, содержащих действия одной ступени (5+4-3, 7*6:2). Учащиеся находят значения этих выражений, учитель организует наблюдение и подводит к выводу: действия в выражениях без скобок, содержащие только сложение и вычитание или умножение и деление, выполняются в том порядке, в котором они записаны.

2. Далее рассматриваются выражения без скобок, в которых используются действия разных ступеней: 1ступень- сложение и вычитание, 2 ступень – умножение и деление(5*7-10, 3+4:2).сначала учитель сообщает правило: в выражениях без скобок, в которых используются действия разных ступеней, сначала выполняется умножение или деление, а потом сложение или вычитание. Уже по нему дети находят значения выражений. Важно организовать анализ выражения и выявить порядок действия.

3. Порядок действий в выражениях, содержащих скобки. Дети уже знают, как выполнять действия со скобками. Они сами находят значения выражений, плотом учитель организует наблюдение и формулирует правило: если выражение содержит скобки, то сначала действия в установленном порядке выполняются в них, а потом вне скобок.

Для закрепления можно предложить задания:

§ Измени порядок действий с помощью скобок: (10-2)+5 и 10-(2+5).

§ Расставь скобки так, чтобы равенство было верным: 7+3*2=20.

§ Расставь знаки действий и скобки так, чтобы равенства были верными:

5 5 5 5=0, 5 5 5 5=1, 5 5 5 5=2, 5 5 5 5=3, 5 5 5 5=4, 5 5 5 5=5 и т.д.

Методика работы с тождественными преобразованиями выражений:

Тождественные преобразования – это замена одного выражения другим, равным по значению данному.

Так, например, при изучении правила вычитания из числа суммы, учитель показывает детям, как по-разному можно вычесть сумму: 15-7, 15-(5+2), (15-5)-2. При всех преобразованиях значение выражения не меняется – эта особенность и лежит в основе тождественных преобразований выражений. Рассматриваются также свойства и правила:

§ Переместительное свойство сложения 3+8=8+3 (удобнее к большему числу прибавить меньшее).

§ Сочетательное свойство сложения 35+2=(30+5)+2=30+(5+2).

§ Правило вычитания из суммы числа 50-7=(40+10)-7=40+(10-7).

§ Конкретный смысл умножения (до изучения таблицы умножения) 21*3=21+21+21.

§ Переместительное свойство умножения 3*18=18*3 (удобнее большее число умножить на меньшее число).

§ Сочетательное свойство умножение 30*2=(3*10)*2=(3*2)*10.

§ Умножение суммы на число 23*2=(20+3)*2=20*2+3*2.

§ Правило деления суммы на число 65:5=(50+15):5=50:5+15:5.

§ Правило деления произведения на число 560:7=(56*10):7=(56:7)*10.

§ Правило деления числа на произведение 560:70=560:(7*10)=(560:10):7.

<== предыдущая лекция | следующая лекция ==>
| МЕТОДИКА ИЗУЧЕНИЯ ЧИСЛОВЫХ ВЫРАЖЕНИЙ И ВЫРАЖЕНИЙ С ПЕРЕМЕННОЙ

Дата добавления: 2014-01-05; Просмотров: 1038; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:

  1. Актуализация проблемы концептуальной, экологической невалидности методик, разработанных на западе, в контексте изучения российской социально -психологической реальности.
  2. Архивирование (регистрация) значений переменной
  3. Билет № 2, 14 Методика организации театрализованного массового праздника.
  4. Билет № 7 Методика организации школьного театрализованного представления.
  5. Билет № 9 Методика организации конкурсно-игровой развлекательной программы
  6. В конце изучения дисциплины предусматривается написание рефератов и сдача зачета в конце 2-го семестра обучения.
  7. В разных случаях для изучения социально-экономических явлений применяются различные виды средних величин, а значит и различные способы и формулы для расчета этих величин.
  8. Введение. Порядок изучения дисциплины.
  9. Весьма эффективным методом изучения личности является судебно-психологическая экспертиза.
  10. Возможные методы изучения спроса продукции
  11. Вопрос 5.2 методика изучения нумерации чисел I концентра
  12. Вопрос 5.2. Методика изучения нумерации чисел 2 концентра.




studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.167.231.97
Генерация страницы за: 0.009 сек.