Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дози опромінення для різних груп критичних органів осіб категорії А та Б, мЗв/рік




Організм людини не відчуває іонізуючих вимірювань, тому при роботі з радіо­активними речовинами необхідно проводити систематичний індивідуальний та загаль­ний контроль доз опромінення

Всі прилади для радіометричного та дозиметричного контролю і вимірювання підрозділяються на 4 групи: для вимірювання зовнішніх потоків радіоактивного ви­промінювання - дозиметри; для вимірювання рівнів забруднення - індикатори рівнів та радіометри; для індивідуального дозиметричного контролю - індивіду­альні дозиметри; для вимірювання радіоактивності повітря та води. Дозиметричні прилади складаються з давача (іонізаційна камера, газовий чи сцинтиляційний лічильник) та вимірювального блока, який складається з підсилювача, блока живлення та вимірювального приладу. Такими приладами можна регіструвати заряджені частинки, гамма-випромінювання та нейтрони.

Робота приладів для радіометричного та дозиметричного контролю базується на таких основних методах вимірювання: іонізаційний метод, який полягає у здатності радіоактивного випромінювання іонізувати повітря; сцинтиляційний метод, який по­лягає у здатності деяких кристалів, газів та розчинів випромінювати світло при проходженні через них іонізуючого випромінювання; фотографічний метод, який полягає у здатності фотографічної емульсії чорніти під впливом іонізуючого випро­мінювання.

3. Захист від іонізуючих випромінювань

Засоби та заходи захисту від іонізуючих випромінювань підрозді­ляються на: організаційні, технічні, санітарно-гігієнічні та лікувально-профілактичні.

3.1. Організаційні заходи від іонізуючих випромінювань передбачають забезпечен­ня виконання вимог норм радіаційної безпеки. Приміщення, які призначені для роботи з радіоактивними ізотопами повинні бути ізольовані від інших і мати спеці­альне оброблення стін, стелі, підлоги. Відкриті джерела випромінювання і всі предмети, які опромінюються повинні знаходитись в обмеженій зоні, перебування в якій пер­соналу дозволяється у виняткових випадках, та й то короткочасно. На контейнерах, устаткуванні, дверях приміщень та інших об’єктах наноситься попереджувальний знак радіаційної небезпеки.

На підприємствах складаються та затверджуються інструкції з охорони праці, у яких вказано порядок та правила безпечного проведення робіт. Для проведення робіт необхідно вибирати якнайменшу достатню кількість ізотопів («захист кількістю»). Застосування приладів більшої точності дає можливість використовува­ти ізотопи, з меншою активністю («захист якістю»). Необхідно також організувати дозиметричний контроль та своєчасне збирання і видалення радіоактивних відходів із приміщень у спеціальних контейнерах.

3.2. Дотехнічних заходів та засобів захисту від іонізуючого випромінювання нале­жать: застосування автоматизованого устаткування з дистанційним керуванням; вико­ристання витяжних шаф, камер, боксів, що оснащені спеціальними маніпуляторами, які копіюють рухи рук людини; встановлення захисних екранів.

3.3. Санітарно-гігієнічні заходи передбачають: забезпечення чистоти приміщень, включаючи щоденне вологе прибирання; улаштування припливно-витяжної вентиляції з щонайменше 5-кратним повітрообміном; дотримання норм особистої гігієни.

3.4. Долікувально-профілактичних заходів належать: попередній та періодичні медогляди осіб, які працюють з радіоактивними речовинами; встановлення раціональ­них режимів праці та відпочинку; використання радіопротекторів - хімічних речовин, що підвищують стійкість організму до іонізуючого опромінення.

3.5. Захист працівника від негативного впливу джерела зовнішнього іонізуючого випромінювання досягається шляхом:

- зниження потужності джерела випромінювання до мінімально необхідної величини («захист кількістю»);

- збільшення відстані між джерелом випромінювання та працівником («захист відстанню»);

- зменшення тривалості роботи в зоні випромінювання («захист часом»);

- встановлення між джерелом випромінювання та працівником захисного екрана («захист екраном»).

Захист від внутрішнього опромінення досягається шляхом виключення безпосереднього ко­нтакту з радіоактивними речовинами у відкритому вигляді та запобігання потраплянню їх у повітря робочої зони.

3.6. При роботі з радіоактивними речовинами важливе значення має застосування засобів індивідуального захисту (ЗІЗ), які запобігають потраплянню радіоактивних забруднень на шкіру та всередину організму, а також захищають від альфа - та, при можливості, від бета-випромінювань.

До ЗІЗ від іонізуючих випромінювань належать: халати, костюми, пневмокос­тюми, шапочки, гумові рукавички, тапочки, бахіли засоби захисту органів дихання та ін. Застосування тих чи інших ЗІЗ залежить від виду і класу робіт. Так при ремонтних і аварійних роботах застосовуються ЗІЗ короткочасного використання - ізолю­вальні костюми (пневмокостюми) шлангові чи з автономним джерелом живлення повітрям.

4. Електромагнітні поля та електромагнітні випромінювання радіочастотного діапазону

Розрізняють природні та штучні джерела електромагнітних полів (ЕМП). В процесі еволюції біосфера постійно знаходилась та знаходиться під впливом ЕМП природного походження (природний фон): електричне та магнітне поля Землі, кос­мічні ЕМП, в першу чергу ті, що генеруються Сонцем. В тепе­рішній час ЕМП антропогенного походження значно перевищують природний фон і є тим несприятливим чинником, чий вплив на людину з року в рік зростає. Джере­лами, що генерують ЕМП антропогенного походження є телевізійні та радіотрансля­ційні станції, установки для радіолокації та радіонавігації, високовольтні лінії елект­ропередач, промислові установки високочастотного нагрівання, пристрої, що забезпе­чують мобільний та сотовий телефонні зв'язки, антени, трансформатори і т. п.

Ступінь впливу ЕМП на організм людини залежить від діапазону частот, інтен­сивності та тривалості дії, характеру випромінювання (неперервне чи модульоване), режиму опромінення, розміру опромінюваної поверхні тіла, індивідуальних особливо­стей організму.

ЕМП можуть викликати біологічні та функціональні несприятливі ефекти в організмі людини. Функціональні ефекти проявляються у передчасній втомлюва­ності, частих болях голови, погіршенні сну, порушеннях центральної нервової (ЦНС) та серцево-судинної систем. При систематичному опроміненні ЕМП спостерігаються зміни кров'яного тиску, сповільнення пульсу, нервово-психічні захворювання, деякі трофічні явища (випадання волосся, ламкість нігтів та ін.). Сучасні дослідження вказують на те, що радіочастотне випромінювання, впливаючи на ЦНС, є вагомим стрес-чинником.

Біологічні несприятливі ефекти впливу ЕМП проявляються у тепловій та нетеп­ловій дії. Нині достатньо вивченою можна вважати лише теплову дію ЕМП, яка при­зводить до підвищення температури тіла та місцевого вибіркового нагрівання органів та тканин організму внаслідок переходу електромагнітної енергії у теплову. Таке нагрі­вання особливо небезпечне для органів із слабкою терморегуляцією (головний мозок, око, нирки, шлунок, кишківник, сім'яники). Наприклад, випромінювання сантиметрового діапазону призводять до появи катаракти, тобто до поступової втрати зору.

Захист від електромагнітних випромінювань радіочастотного діапазону

Засоби та заходи захисту від ЕМ випромінювань радіочастотного діапазону поділяються на індивідуальні та колективні. Останні можна підрозділити на організа­ційні, технічні та лікувально-профілактичні.

1. До організаційних заходів колективного захисту належать:

- розміщення об'єктів, які випромінюють ЕМП таким чином, щоб звести до мінімуму можливе опромінення людей;

- "захист часом" - перебування персоналу в зоні дії ЕМП обмежується мінімально необхідним для проведення робіт часом;

- «захист відстанню» - віддалення робочих місць на максимально допустиму відстань від джерел ЕМП;

- "захист кількістю" - потужність джерел випромінювання повинна бути мінімально необхідною;

- виділення зон випромінювання ЕМП відповідними знаками безпеки;

- проведення дозиметричного контролю.

2. Технічні засоби колективного захисту передбачають:

- екранування джерел випромінювання ЕМП;

- екранування робочих місць;

- дистанційне керування установками, до складу яких входять джерела ЕМП;

- застосування попереджувальної сигналізації.

3. До лікувально-профілактичних заходів колективного захисту належать:

- попередній та періодичні медогляди;

- надання додаткової оплачуваної відпустки та скорочення тривалості робочої зміни;

- допуск до роботи з джерелами ЕМП осіб, вік яких становить не менше 18 років, а також таких, що не мають протипоказів за станом здоров'я.

Одним із найбільш ефективних технічних засобів захисту від ЕМ випромі­нювань радіочастотного діапазону, що знаходить широке застосування у промисловості є екранування.

Як засоби індивідуального захисту від ЕМ випромінювань застосовуються халати, комбінезони, захисні окуляри та ін. Матеріалом для халатів та комбінезонів слугує спеціальна радіотехнічна тканина, в структурі якої тонкі металеві нитки утворюють сітку. Для захисту очей використовують спеціальні радіозахисні окуляри ОР3-5 (ЗП5-90), на скло яких нанесено тонку прозору плівку напівпровідникового олова.

5. Випромінювання оптичного діапазону

Оптичний діапазон охоплює область електромагнітного випромінювання, до складу якої входять інфрачервоні (ІЧ), видимі (ВВ) та ультрафіолетові (УФ) випромі­нювання (рис. 1). За довжиною хвилі ці випромінювання розподіляються наступ­ним чином: ІЧ - 540 мкм...760 нм, ВВ - 760...400 нм, УФ - 400... 10 нм. Зі сторони інфрачервоних випромінювань оптичний діапазон межує з радіочастотним, а зі сторо­ни ультрафіолетових - з іонізуючими випромінюваннями.

Рис. 1 - Розподіл випромінювань оптичного діапазону за довжиною хвилі

5.1 Інфрачервоне випромінювання здійснює на організм людини, в основному, теплову дію. Тому джерелом ІЧ-випромінювань є будь-яке нагріте тіло, причому його температура й визначає інтенсивність теплового випромінювання Е (Вт/м2):

Е = εСо(Т/100)4,

де ε - ступінь чорноти тіла (матеріалу);

Со - коефіцієнт випромінювання абсолютно чорного тіла (Со= 5,67 Вт/м2К);

Т - температура тіла (матеріалу), К.

Залежно від довжини хвилі ІЧ-випромінювання поділяються на короткохвильові з довжиною хвилі від 0,76 до 1,4 мкм та довгохвильові - більше 1,4 мкм. Саме довжина хвилі значною мірою обумовлює проникну здатність ІЧ-випромінювань.

Найбільшу проникну здатність мають короткохвильові ІЧ-випромінювання, які впли­вають на органи та тканини організму людини, що знаходяться на глибині кількох сантиметрів від поверхні тіла. ІЧ промені довгохвильового діапазону затримуються поверхневим шаром шкіри.

При тривалому перебуванні людини в зоні теплового променевого потоку, як і при систематичному впливі високих температур, відбувається різке порушення тепло­вого балансу в організмі. Інтенсивність теплового опромінення обумовлює також появу певних нервових розладів: дратівли­вість, часті болі голови, безсоння. Серед працівників "гарячих" цехів (прокатників, ливарників та ін.) відзначається значний відсоток осіб, які страждають неврастенією.

Ступінь впливу ІЧ-випромінювань залежить від низки чинників: спектра та інтен­сивності випромінювання; площі поверхні, яка випромінює ІЧ промені; розмірів ділянок тіла людини, що опромінюються; тривалості впливу; кута падіння ІЧ променів і т. п.

У промисловості джерелами інтенсивного випромінювання хвиль інфрачервоного спектра є: нагріті поверхні стін, печей та їх відкриті отвори, ливарні та прокатні стани, струмені розплавленого металу, нагріті деталі та заготовки, різні види зварю­вання та плазмового оброблення тощо.

Інтенсивність інфрачервоного теплового випромінювання вимірюється актино­метрами, а спектральна інтенсивність випромінювання - інфрачервоними спектро­графами типу ИКС-10, ИКС-12, ИКС-14 та радіометром ІЧ-випромінювання РАТ-2П.

До основних заходів та засобів щодо зниження небезпечної та шкідливої дії ІЧ-випромінювання належать:

- зниження інтенсивності випромінювання джерел шляхом вдосконалення технологічних процесів та устаткування;

- раціональне розташування устаткування, що є джерелом ІЧ-випромінювання;

- автоматизація та дистанційне керування технологічними процесами;

- використання повітряних та водоповітряних душів у "гарячих" цехах;

- застосування теплоізоляції устаткування та захисних екранів;

- раціоналізація режимів праці та відпочинку;

- проведення попереднього та періодичних медоглядів;

- використання засобів індивідуального захисту.

5.2 Ультрафіолетове випромінювання

Ультрафіолетові (УФ) випромінювання належать до оптичного діапазону елек­тромагнітних хвиль і знаходяться між тепловими та іонізуючими (рентгенівськими) випромінюваннями, тому мають властивості як перших, так і других. За способом генерації вони наближаються до теплового діапазону випромінювань (температурні випромінювачі починають генерувати УФ промені при температурі понад 1200 °С), а за біологічною дією - до іонізуючого випромінювання. Негативні наслідки від ультрафіолетового опромі­нення значно менші ніж від іонізуючого. Це обумовлено більшою довжиною його хвилі, а відтак і меншою енергією кванта УФ променів.

Спектр УФ-випромінювань поділяється на три області: УФА - довгохвильова з довжиною хвилі від 400 до 320 нм; УФВ - середньохвильова - від 320 до 280 нм; УФС - короткохвильова - від 280 до 10 нм. Ультрафіолетові випромінювання області УФА відзначаються слабкою біологічною дією. Середньо- та короткохвильові УФ промені, в основному, впливають на шкіру та очі людини. Значні дози опромінен­ня можуть спричинити професійні захворювання шкіри (дерматити) та очей (елект­роофтальмію). УФ-випромінювання впливають також на центральну нервову систему, що проявляється у вигляді болі голови, підвищення температури тіла, відчуття розби­тості, передчасного втомлення, нервового збудження тощо. Крім того, несприятлива дія УФ променів іонізує повітря та утворює озон.

Слід зазначити, що УФ-випромінювання характеризується двоякою дією на ор­ганізм людини: небезпекою переопромінення та його необ­хідністю для нормального функціонування організму, оскільки УФ промені є важли­вим стимулятором основних біологічних процесів. Природне освітлення, особливо сонячні промені, є достатнім для організму людини джерелом УФ-випромінювань, тому його відсутність або ж недостатність може створити певну небезпеку. 3 метою профілактики ультрафіолетової недостатності для працівників, на робочих місцях яких відсутнє природне освітлення, наприклад шахтарів, необхідно до складу приміщень охорони здоров'я включати фітарії.

Для вимірювання інтенсивності УФ-випромінювань використовують радіо­метр УФР-21.

Захист від інтенсивного опромінення ультрафіолетовими променями досягаєть­ся: раціональним розташуванням робочих місць, «захистом відстанню», екрануван­ням джерел випромінювання, екрануванням робочих місць, засобами індивідуального захисту. Найбільш раціональним методом захисту вважається екранування (укрит­тя) джерел УФ-випромінювань. Як матеріали для екранів застосовують, зазвичай, непрозорі металеві листи або світлофільтри. До засобів індивідуального захисту належить спецодяг (костюми, куртки, білі халати), засоби для захисту рук (тканинні рукавички), лиця (захисні щитки) та очей (окуляри зі світлофільтрами).

6. Лазерне випромінювання

Джерела види лазерного випромінювання

Лазерне випромінювання широко використовується в інформаційних системах, радіотех­ніці, енергетиці, зв'язку, металургії, металообробці, біології, медицині і т. п.

Джерелом лазерного випромінювання є оптичний квантовий генератор (лазер). Лазери відрізня­ються за наступними ознаками:

- за активним елементом, в якому енергія накачування перетворюється у випромінювання - газові, рідинні, твердотілі, напівпровідникові;

- за методом збудження (накачування) - пропусканням постійного, імпульсного чи високочастотного струму через газ; неперервним чи імпульсним світлом; опромі­ненням іонізуючими променями;

- за довжиною світлової хвилі, що генерується - ультрафіолетові, видимого випромінювання, інфрачервоні;

- за режимом роботи - неперервний та імпульсний;

- за конструктивним виконанням - закриті та відкриті;

- за особливостями використання - стаціонарні та переносні;

- за способом відведення тепла від лазера - з природним та примусовим

охолодженням: повітряним чи водяним;

- за ступенем безпеки випромінювання, що генерується лазером - чотирьох класів.

Вплив лазерного випромінювання на організм

Дія лазерного випромінювання на організм людини відзначається складним харак­тером, а біологічні ефекти, які при цьому виникають можна підрозділити на дві групи: первинні ефекти - органічні зміни, що виникають безпосередньо в опромінених тканинах; вторинні ефекти - фізіологічні зміни, що виникають в організмі, як реакція на опромінення. Вторинні ефекти проявляються у частих болях голови, швидкій втомі, порушенні сну, підвищеній збудливості тощо. Оскільки лазерне випромінювання характеризується великою густиною енергії, то в опромінених тканинах можуть виник­нути опіки різного ступеня. Найбільш небезпечне лазерне випромінювання для очей, оскільки кришталик фокусує та концентрує його на сітківці.

Нормування лазерного випромінювання

3 метою забезпечення безпечних умов праці персоналу санітарними правила­ми та нормами (СанПиН 5804-91) регламентовані гранично допустимі рівні (ГДР) лазерного випромінювання на робочих місцях, які виражені в енергетичних експози­ціях.

Енергетична експозиція - це відношення енергії випромінювання, що падає на відповідну ділянку поверхні, до площі цієї ділянки. Одиницею вимірювання є Дж/см2.

В різних діапазонах довжин хвиль норми встановлюють ГДР лазерного випромінювання в залежності від тривалості імпульсу, частоти повторення імпульсів, тривалості дії, кутового розміру променя чи діаметра плями засвітки на сітківці, фонової освітленості лиця працівника тощо.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 766; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.