Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

В то время как для модификационного метода Эйлера

 

a1=0, a2=1,

b1=b2=1/2.

 

Формулы 1.9, 1.10, 1.11 описывают некоторый метод типа Рунге-Кутты. Посмотрим, какого порядка метод можно рассчитывать получить в лучшем случае и каковы допустимые значения параметров a1, a2, b1 и b2.

 

Чтобы получить соответствие ряду Тейлора вплоть до членов степени h, в общем случае достаточно одного параметра. Чтобы получить согласование вплоть до членов степени h2, потребуется еще два параметра, так как необходимо учитывать члены h2fx и h2ffy. Так как у нас имеется всего четыре параметра, три из которых потребуются для создания согласования с рядом Тейлора вплоть до членов порядка h2, то самое лучшее, на что здесь можно рассчитывать - это метод второго порядка.

 

В разложении f(x,y) в ряд 1.5 в окрестности точки xm,ym положим x=xm+b1h,

y=ym+b2hf.

Тогда f(xm+b1h,ym+b2hf)=f+b1hfx+b2hffy+O(h2), где функция и производные в правой части равенства вычислены в точке xm,ym.

Тогда 1.9 можно переписать в виде ym+1=ym+h[a1f+a2f+h(a2b1fx+a2b2ffy)]+O(h3).

 

Сравнив эту формулу с разложением в ряд Тейлора, можно переписать в виде

 

ym+1=ym+h[a1f+a2f+h(a2b1fx+a2b2ffy)]+O(h3).

 

Если потребовать совпадения членов hf, то a1+a2=1.

Сравнивая члены, содержащие h2fx, получаем a2b1=1/2.

Сравнивая члены, содержащие h2ffy, получаем a2b2=1/2.

 

Так как мы пришли к трем уравнениям для определения четырех неизвестных, то одно из этих неизвестных можно задать произвольно, исключая, может быть, нуль, в зависимости от того, какой параметр взять в качестве произвольного.

 

Положим, например, a2=w¹0. тогда a1=1-w, b1=b2=1/2w и соотношения 1.9, 1.10, 1.11 сведутся к

 

ym+1=ym+h[(1-w)f(xm,ym)+wf(xm+h/2w,ym+h/2wf(xm,ym))]+O(h3) 1.12

 

 

Это наиболее общая форма записи метода Рунге-Кутта второго порядка. При w=1/2 мы получаем исправленный метод Эйлера, при w=1 получаем модификационный метод Эйлера. Для всех w, отличных от нуля, ошибка ограничения равна

 

et=kh3 1.13

 

Методы Рунге-Кутта третьего и четвертого порядков можно вывести совершенно аналогично тому, как это делалось при выводе методов первого и второго порядков. Мы не будем воспроизводить выкладки, а ограничимся тем, что приведем формулы, описывающие метод четвертого порядка, один из самых употребляемых методов интегрирования дифференциальных уравнений. Этот классический метод Рунге-Кутта описывается системой следующих пяти соотношений

 

ym+1=ym+h/6(R1+2R2+2R3+R4) 1.14

где R1=f(xm,ym), 1.15

R2=f(xm+h/2,ym+hR1/2), 1.16

R3=f(xm+h/2,ym+hR2/2), 1.17

R4=f(xm+h/2,ym+hR3/2). 1.18

 

Ошибка ограничения для этого метода равна et=kh5

так что формулы 1.14-1.18 описывают метод четвертого порядка. Заметим, что при использовании этого метода функцию необходимо вычислять четыре раза.

 

 


Во многих областях науки и техники, а также отраслях наукоемкой промышленности, таких как: авиационная, космическая, химическая, энергетическая, - являются весьма распространенные задачи прогноза протекания процессов, с дальнейшей их коррекцией.

Решение такого рода задач связано с необходимостью использования численных методов, таких как: метод прогноза и коррекции, метод Адамса-Башфорта, метод Эйлера, метод Рунге-Кута, и др. При этом, стоит задача решения системы линейных дифференциальных уравнений первого порядка одним из методов интегрирования, на произвольном промежутке времени. Одним из оптимальных методов дающих высокую точность результатов – является пяти точечный метод прогноза и коррекции Адамса-Башфорта. Для повышения точности метода используется трех точечный метод прогноза и коррекции с автоматическим выбором шага, что приводит к универсальному методу интегрирования систем дифференциальных уравнений произвольного вида на любом промежутке интегрирования.

<== предыдущая лекция | следующая лекция ==>
Решение обыкнов. Диф. уравнений | Метод прогноза и коррекции
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 644; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.