Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод прогноза и коррекции

Метод прогноза и коррекции относится к задачам класса Коши, а именно к численным решениям многошаговыми методами.

Рассмотрим задачу Коши:

, (2.1.1)

Подставим в (2.1.1) точное решение y(x), и проинтегрируем это уравнение на отрезке , тогда получим:

(2.1.2)


где в последнем член предполагаем, что p(x) полином, аппроксимирующий f(x,y(x)). Чтобы построить этот полином, предположим, что - приближения к решению в точках . Будем считать для начала, что узлы Xi расположены равномерно с шагом h. тогда fi = f(xi,yi), (i=k,k-1,k-2,…,k-N) есть приближения к f (x,y(x)) в точках и мы в качестве P возьмем интерполяционный полином для выбора данных (xi,fi),

(i =k,k-1,k-2,…,k-N). Таким образом, P – полином степени N, удовлетворяющий условиям P(xi)=fi, (i = k,k-1,k-2,…,k-N). В принципе, можем проинтегрировать этот полином явно, что ведет к следующему методу:

(2.1.3)

В простейшем случае, когда N=0, полином P есть константа, равная fk, и (2.1.3) превращается в обычный метод Эйлера:

(2.1.4)

Если N=1, то P есть линейная функция, проходящая через точки

(xk-1,fk-1) и (xk,fk), т.е.

(2.1.5)

интегрируя этот полином от Xk до Xk+1, получим следующий метод:

(2.1.6)

который является двухшаговым, поскольку использует информацию в двух точках xk и xk-1. Аналогично, если N=2, то P - есть кубический интерполяционный полином, а соответствующий метод определяется формулой:

(2.1.7)

Отметим, что метод (2.1.6) – есть метод Адамса-Башфорта второго порядка, (2.1.7) – метод Адамса-Башфорта четвертого порядка.


 

По 4 точкам:

По 5 точкам:

Треугольник Паскаля 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 5 1

Для крайних точек:

По 3м точкам

По 5 точкам

Для неравностоящих точек


Если задана функция y(x), то это означает, что любому допустимому значению х сопоставлено значение у. Но нередко оказывается, что нахождение этого значения очень трудоёмко. Например, у(х) может быть определено как решение сложной задачи, в которой х играет роль параметра или у(х) измеряется в дорогостоящем эксперименте. При этом можно вычислить небольшую таблицу значений функции, но прямое нахождение функции при большом числе значений аргумента будет практически невозможно. Функция у(х) может участвовать в каких-либо физико­-технических или чисто математических расчётах, где её приходится многократно вычислять. В этом случае выгодно заменить функцию у(х) приближённой формулой, то есть подобрать некоторую функцию j(х), которая близка в некотором смысле к у(х) и просто вычисляется. Затем при всех значениях аргумента полагают у(х)»j(х).

Большая часть классического численного анализа основывается на приближении многочленами, так как с ними легко работать. Однако для многих целей используются и другие классы функций.

Выбрав узловые точки и класс приближающих функций, мы должны ещё выбрать одну определённую функцию из этого класса посредством некоторого критерия — некоторой меры приближения или «согласия». Прежде чем начать вычисления, мы должны решить также, какую точность мы хотим иметь в ответе и какой критерий мы изберём для измерения этой точности.

Всё изложенное можно сформулировать в виде четырёх вопросов:

1. Какие узлы мы будем использовать?

2. Какой класс приближающих функций мы будем использовать?

3. Какой критерий согласия мы применим?

4. Какую точность мы хотим?

Существуют 3 класса или группы функций, широко применяемых в численном анализе. Первая группа включает в себя линейные комбинации функций 1, х, х2, …, хn, что совпадает с классом всех многочленов степени n (или меньше). Второй класс образуют функции cos aix, sin aix. Этот класс имеет отношение к рядам Фурье и интегралу Фурье. Третья группа образуется функциями e-az. Эти функции встречаются в реальных ситуациях. К ним, например, приводят задачи накопления и распада.

Что касается критерия согласия, то классическим критерием согласия является «точное совпадение в узловых точках». Этот критерий имеет преимущество простоты теории и выполнения вычислений, но также неудобство из-за игнорирования шума (погрешности, возникающей при измерении или вычислении значений в узловых точках). Другой относительно хороший критерий — это «наименьшие квадраты». Он означает, что сумма квадратов отклонений в узловых точках должна быть наименьшей возможной или, другими словами, минимизирована. Этот критерий использует ошибочную информацию, чтобы получить некоторое сглаживание шума. Третий критерий связывается с именем Чебышева. Основная идея его состоит в том, чтобы уменьшить максимальное отклонение до минимума. Очевидно, возможны и другие критерии.

Более конкретно ответить на поставленные 4 вопроса можно лишь исходя из условий и цели каждой отдельной задачи.

 

Интерполяция многочленами

Цель задачи о приближении (интерполяции): данную функцию у(х) требуется приблизительно заменить некоторой функцией j(х), свойства которой нам известны так, чтобы отклонение в заданной области было наименьшим. интерполяционные формулы применяются, прежде всего, при замене графически заданной функции аналитической, а также для интерполяции в таблицах.

 

Методы интерполяции Лагранжа и Ньютона

Один из подходов к задаче интерполяции — метод Лагранжа. Основная идея этого метода состоит в том, чтобы прежде всего найти многочлен, который принимает значение 1 в одной узловой точке и 0 во всех других. Легко видеть, сто функция

является требуемым многочленом степени n; он равен 1, если x=xj и 0, когда x=xi, i¹j. Многочлен Lj(x)×yj принимает значения yi в i-й узловой точке и равен 0 во всех других узлах. Из этого следует, что есть многочлен степени n, проходящий через n+1 точку (xi, yi).

Другой подход — метод Ньютона (метод разделённых разностей). Этот метод позволяет получить аппроксимирующие значения функции без построения в явном виде аппроксимирующего полинома. В результате получаем формулу для полинома Pn, аппроксимирующую функцию f(x):

P(x)=P(x0)+(x-x0)P(x0,x1)+(x-x0)(x-x1)P(x0,x1,x2)+…+

(x-x0)(x-x1)…(x-xn)P(x0,x1,…,xn);

 

— разделённая разность 1-го порядка;

— разделённая разность 2-го порядка и т.д.

Значения Pn(x) в узлах совпадают со значениями f(x)

Фактически формулы Лагранжа и Ньютона порождают один и тот же полином, разница только в алгоритме его построения.

 

Сплайн-аппроксимация

Другой метод аппроксимациисплайн-аппроксимация — отличается от полиномиальной аппроксимации Лагранжем и Ньютоном. Сплайном называется функция, которая вместе с несколькими производными непрерывна на отрезке [a, b], а на каждом частном интервале этого отрезка [xi, xi+1] в отдельности являются некоторым многочленом невысокой степени. В настоящее время применяют кубический сплайн, то есть на каждом локальном интервале функция приближается к полиному 3-го порядка. Трудности такой аппроксимации связаны с низкой степенью полинома, поэтому сплайн плохо аппроксимируется с большой первой производной. Сплайновая интерполяция напоминает лагранжевую тем, что требует только значения в узлах, но не её производных.

 

Метод наименьших квадратов

Предположим, что требуется заменить некоторую величину и делается n измерений, результаты которых равны xi=x+ei (i=1, 2, …, n), где ei — это ошибки (или шум) измерений, а х — истинное значение. Метод наименьших квадратов утверждает, что наилучшее приближённое значение есть такое число, для которого минимальна сумма квадратов отклонений от :

Один из наиболее общих случаев применения этого метода состоит в том, что имеющиеся n наблюдений (xi, yi) (i=1, 2, …, n) требуется приблизить многочленом степени m<n

y(x)=a0+a1x+a2x2+…+amxm

Вычисленная кривая у(х) в некотором смысле даёт сложное множество значений уi. Метод наименьших квадратов утверждает, что следует выбирать многочлен, минимизирующий функцию.



Для нахождения минимума дифференцируем  по каждой из неизвестных ak. В результате получим:

Определитель этой системы отличен от нуля и задача имеет единственное решение. Но система степеней не ортогональна, и при больших значениях n задача плохо обусловлена. Эту трудность можно обойти, используя многочлены ортогональные с заданным весом на заданной системе точек, но к этому прибегают только в задачах, связанных с особенно тщательной статической обработкой эксперимента.

 

Полиномы Чебышева

Критерии согласия данного метода — минимизация максимальной ошибки.

Полиномы Чебышева определяются следующим образом: Tn(x)=cos(n×arccos(x))

Например: T0(x)=cos(0)=1,

T1(x)=cos(q)=x,

T2(x)=cos(2q)=cos2(q)-sin2(q)=2x2-1.

Можно было бы и дальше использовать тригонометрические соотношения для нахождения полиномов Чебышева любого порядка, но будет лучше установить для них рекурентное соотношение, связывающее Tn+1(x), Tn(x) и Tn-1(x):

Tn+1(x)=cos(nq+q)=cos(nq)cos(q)-sin(nq)sin(q),

Tn-1(x)=cos(nq-q)=cos(nq)cos(q)-sin(nq)sin(q).

Складывая эти неравенства, получим:

Tn+1(x)+Tn-1(x)=2cos(nq)cos(q)=2xTn(x);

Tn+1(x)=2xTn(x)-Tn-1(x).

  Рис. 1

Применяя полученные формулы можно найти любой полином Чебышева. Например, Т3(x)=2xT2(x)-T1(x). Подставляя значения T2(х) и Т1(х) имеем Т3(х)=2х(2х2-1)-х=4х3-3х. Графически первые 10 полиномов Чебышева изображены ниже. Последующие полиномы по-прежнему колеблются между +1 и -1, причём период колебания уменьшаются с ростом порядка полинома.

Преобразования q=arccos(x) можно рассматривать как проекцию пересечения полукруга с множеством прямых, имеющих равные углы между собой (рис.1). Таким образом, множество точек xj, на котором система чебышевских многочленов Tn(x) ортогональна, таково:

, (j=0, 1, 2, …,N-1)

Так как Tn(x) есть, по существу, cos(nq), то они являются равноколеблющимеся функциями, и так как они многочлены, то обладают всеми свойствами ортогональных многочленов.

Чебышев показал, что из всех многочленов Рn(x) степени n старшим коэффициентом 1, у многочлена точная верхняя грань абсолютных значений на интервале -1£x£1 наименьшая. Так как верхняя грань Tn(x)=1, óêàçàííàÿ âåðõíÿÿ ãðàíü ðàâíà .

<== предыдущая лекция | следующая лекция ==>
В то время как для модификационного метода Эйлера | Свойства объектов регулирования
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1783; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.036 сек.