Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие свойства газоразрядных ламп

Лекция № 5. Газоразрядные лампы

Содержание лекции:

- общие свойства газоразрядных ламп;

- люминесцентные лампы.

Цели лекции:

- ознакомиться с основными принципами работы ГЛ, их свойствами и параметрами.

Газоразрядной лампой (ГЛ) называют лампу, в которой оптическое излучение возникает в результате электрического разряда в газах, парах или их смесях.

Особенности ГЛ и области применения определяются тем, что ГЛ имеют самую высокую световую отдачу и большой срок службы по сравнению с ЛН, а также могут иметь разнообразные спектры излучения и широкий диапазон значений мощности, яркости и других параметров. Поэтому современные ГЛ все шире применяются для освещения, оттесняя ЛН. Уже сегодня в передовых странах мира ГЛ создают более половины светового потока, так, например, в США на законодательном уровне потребителей электроэнергии обязывают переходить даже в домашнем освещении на ГЛ.

Применение ГЛ во многих отраслях народного хозяйства, в медицине, новейшей технике и др., объясняется особенностями электрического разряда, которые позволяют создавать источники излучения с весьма разнообразным сочетанием параметров. Подбирая соответствующие наполнение и условия разряда, удается создавать высокоэффективные источники излучения практически в любой части не только видимого, но также УФ и ИК спектров. При этом можно получать спектры излучения, состоящие из одиночных линий, многолинейчатые и непрерывные. Это достоинство ГЛ открыло им исключительно широкие возможности применения не только для освещения, но также для многочисленных специальных целей.

Разряды высокого и особенно сверхвысокого давления имеют высокую яркость, в десятки и сотни раз превосходящую яркость ЛН. Поэтому ГЛ с успехом применяются в светооптических приборах и установках. Малая инерционность излучения ГЛ позволяет применять их там, где требуется модуляция излучения, например, в звукозаписи, оптической телефонии и других случаях. Широкое и весьма разнообразное применение находят импульсные лампы (ИЛ), дающие вспышки излучения исключительно высокой яркости и очень малой длительности. Они применяются в многочисленных приборах и установках для наблюдения и изучения быстродвижущихся частей машин и механизмов (стробоскопы), фотографирования и изучения быстропротекающих процессов, аэрофотосъемки, оптической дальномерии и т.д. В последнее время ИЛ широко применяются для оптической накачки лазеров.

Недостатком ГЛ является некоторая сложность их включения в сеть, связанная с особенностями разряда. Для его зажигания требуется более высокое напряжение, чем для устойчивого горения. Для обеспечения устойчивого горения в цепь каждой лампы включается балласт, ограничивающий ток разряда требуемыми пределами. Другой недостаток ГЛ с парами обусловлен зависимостью характеристик от их теплового режима, поскольку температура определяет давление паров рабочего вещества лампы. Номинальный режим устанавливается только спустя некоторое время после включения. Повторное зажигание ламп с разрядом в парах металла при высоком и сверхвысоком давлении без специальных приемов возможно только по истечении некоторого времени после выключения.

Принцип действия ГЛ основан на электрическом разряде между двумя электродами, запаянными в прозрачную для оптического излучения колбу той или иной формы. Иногда для облегчения зажигания впаивают дополнительные электроды. Внутреннее пространство колбы после удаления воздуха и тщательного обезгаживания лампы (удаление сорбированных в материале колбы и электродах паров воды и других газов при помощи нагрева под откачкой) наполняется определенным газом (чаще всего инертным) до заданного давления или инертным газом и небольшим количеством металла с высокой упругостью паров, например, ртутью, натрием и др.

Существует категория ГЛ с электродами, работающими в открытой атмосфере, с разрядом в проточном газе или с высокочастотным безэлектродным разрядом.

Вид разряда в ГЛ может быть дуговой, тлеющий и импульсный. В ГЛ стационарного действия используются дуговой и тлеющий вид разряда. В источниках импульсного действия (ИЛ) - импульсный разряд. Вид разряда определяется параметрами элементов внешней цепи (питающим напряжением и балластным сопротивлением), типом катода и давлением газа или пара, наполняющего лампу.

Классификация ГЛ возможна по физическим, конструктивным признакам, эксплуатационным свойствам и областям применения. Здесь предлагается классификация по физическим признакам, которые определяют важнейшие свойства ГЛ, такие, как спектр и цветность излучения, яркость, градиент потенциала, энергетический КПД. Для них определяющими факторами являются состав газовой среды (рабочее вещество), парциальные давления компонентов газовой смеси и ток.

Зажигание разряда возможно лишь при напряжении выше определенного значения, когда становится возможным лавинное образование зарядов в газовом межэлектродном промежутке. Это приводит к резкому, практически внезапному (10-5 - 10-7 с) возрастанию тока и появлению свечения. Этот процесс называется зажиганием самостоятельного разряда, а соответствующее ему напряжение - напряжением зажигания. При меньшем напряжении межэлектродный промежуток является диэлектриком. Напряжение зажигания самостоятельного разряда U3 определяет нижнюю границу напряжения, которое необходимо приложить к ГЛ для возникновения самостоятельного разряда и зависит от рода газа, наполняющего колбу, его давления р, расстояния между электродами dэл материала и свойств катода, а также от ряда других причин. Напряжение, необходимое для стабилизации разряда после его возникновения, как правило, ниже U3.. Рабочее напряжение на ГЛ определяется расстоянием между электродами и условиями разряда, а ток, необходимый для получения заданной мощности, обеспечивается подбором сопротивления балласта, с которым ГЛ включается в сеть.

Стабилизация разряда необходима потому, что подавляющее большинство ГЛ работает на падающих (или горизонтальных) участках вольтамперной характеристики, на которой с ростом тока напряжение на ГЛ падает. Поэтому устойчивая работа ГЛ возможна только при наличии в схеме устройств, ограничивающих силу тока в заданных пределах.

Преобразование излучения разряда при помощи люминофоров открыло широкие возможности создания ГЛ с самыми различными спектрами излучения. Обычно для возбуждения люминофора используется УФ излучение разряда, которое люминофор преобразует с определенными потерями в более длинноволновое излучение, лежащее в УФ или видимой областях спектра.

Электроды являются одним из основных конструктивных узлов ГЛ. Имеются два основных электрода: катод и анод. Катод обеспечивает поступление электронов, необходимое для поддержания разряда; анод является приемником электронов из разрядного промежутка. При работе на постоянном токе катод и анод имеют, как правило, различную конструкцию с тем, чтобы обеспечить оптимальную работу каждого из них. У ГЛ, использующих излучение столба и работающих на переменном токе, оба электрода, как правило, имеют одинаковые конструкцию и размеры, поскольку каждые полпериода они меняются ролями. В зависимости от типа разряда применяют холодные, накаленные или пленочные катоды.

<== предыдущая лекция | следующая лекция ==>
Лекция № 4. Электрические вольфрамовые лампы накаливания | Люминесцентные лампы
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 608; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.