Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейная зависимость и независимость векторов




Система векторов называется линейно-зависимой, если хотя бы один из этих векторов является линейной комбинацией остальных, т.е. некоторый вектор можно представить в виде:

,

где - числовые множители.

В противоположном случае система векторов называется линейно-независимой.

Существует и другое определение линейной зависимости системы векторов.

Система векторов называется линейно-зависимой, если существует такие числа по крайней мере одно из которых отлично от нуля, что имеет место равенство:

.

Если же это равенство имеет место тогда и только тогда, когда , то система векторов линейно-независима.

В n -мерном пространстве существует не более n линейно-независимых векторов. Любая система векторов, состоящая из числа векторов, больше n, является линейно-зависимой в этом пространстве.

 

Пример 4.6. Определить, является ли система векторов ; ; ; линейно-зависимой. Если является, то один из векторов выразить как линейную комбинацию других.

Решение. Имеем четыре вектора в трехмерном пространстве. Следовательно, данная система векторов является линейно-зависимой. Можно решить эту задачу, воспользовавшись вторым определением линейной зависимости системы векторов.

Запишем уравнение:

.

Определим значения . Для этого в равенство подставим данные вектора и произведем соответствующие действия:

Умножим каждый вектор на и сложим полученные векторы.

Учитывая, что два вектора равны в том случае, если равны их соответствующие координаты, получим однородную систему линейных уравнений:

Решаем данную систему методом Жордана-Гаусса:

.

На первом шаге принимаем «1» в третьей строке за направляющий элемент, меняем местами данную строку с первой и получаем нули в первом столбце. На втором шаге принимаем за направляющий элемент «1», стоящий во второй строке и во втором столбце. С помощью этой строки получаем нули во втором столбце. На третьем шаге принимаем «-48» за направляющий элемент и делим третью строку на «-48». С помощью полученной строки получаем нули в третьем столбце. Последняя матрица соответствует системе уравнений:

откуда получаем:

Найденные значения подставим в исходное равенство:

Полагая , разделим полученное равенство на . В результате будем иметь следующую зависимость между векторами:

Заметим, что из полученного равенства любой из векторов можно представить, как линейную комбинацию остальных векторов, например:

 

Пример 4.7. Доказать, что векторы , и компланарны.

Решение.

, т.к. векторы линейно зависимы, то они компланарны.

 

Пример 4.8. Являются ли векторы линейно зависимыми?

Решение. Составим линейную комбинацию и приравняем ее нулю , где – нуль вектор.

Если все то система линейно независимая. Используя правила умножения вектора на число, сложение и сравнение векторов, заданных своими координатами, получим следующую систему линейных уравнений

Заметим, что формулы Крамера для системы двух уравнений, справедливы и для любой линейной системы n уравнений с n неизвестными. Если определитель системы то система имеет единственное решение, определяемое формулами Крамера

Вычислим определитель нашей системы

Определители – равны нулю, т.к. имеют нулевые столбцы, поэтому система имеет только нулевое решение Следовательно данные векторы линейно независимые.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 908; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.054 сек.