Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Экспрессия генов




Биосинтез белка.

Принцип комплементарного спаривания азотистых оснований нуклеотидов лежит в основе реализации генетической информации в процессе биосинтеза белка.

Главные условия для биосинтеза белка похожи на условия репликации ДНК.

1. Наличие исходной матрицы – участка молекулы ДНК- гена. Ген имеет строго определенную последовательность нуклеотидов, а значит определяет точную последовательность аминокислот в полипептидной цепочке собираемого белка.

2. Наличие строительного материала. Строительным сырьем для РНК являются отдельные рибонуклеотиды с азотистыми основаниями: аденин, гуанин, цитозин, урацил.

3. Наличие энергии АТФ.

4. Наличие ферментов (например, РНК-полимеразы).

5. Наличие места для синтеза. Местом первого этапа биосинтеза белка является ядро эукариотической клетки или цитоплазма (прокариоты), а второй этап протекает на рибосомах гранулярной эндоплазматической сети.

Как известно, в ДНК содержится определенная генетическая информация:

- о структуре всех белков и РНК организма,

- о порядке реализации этой информации в разных клетках в процессе онтогенеза (индивидуального развития) и при различных функциональных состояниях.

Поскольку во всех соматических клетках организма один и тот же набор из 46 хромосом, то, несмотря на подчас сильные отличия между клетками, все они содержат в своих ДНК одну и ту же генетическую информацию. (Некоторое исключение составляют лимфоциты, в процессе формирования которых происходит перестройка генов иммуноглобулинов - антител.)

Данное обстоятельство - генетическая эквивалентность ядер всех соматических клеток организма послужило основанием для клонирования животных. В процессе репликации ДНК генетическая информация воспроизводится целиком, чтобы затем передаваться дочерним клеткам.

Но, кроме того, эта информация экспрессируется (реализуется) в клетке, обуславливая все проявления ее жизнедеятельности. Однако экспрессии подвергается отнюдь не вся имеющаяся в ядре генетическая информация, а лишь какая-то (обычно весьма небольшая) ее часть.

Этим-то и обусловлены особенности тех или иных клеток тем, каков спектр (набор) функционирующих генов и каковы при этом уровни их активности.

Экспрессия информации о структуре определенного белка включает 4 этапа: транскрипция, процессинг, трансляция и фолдинг.

Первый этап — транскрипция: образование в клеточном ядре на соответствующем гене (локализующемся в одной из хромосом) специального посредника — матричной РНК (м-РНК). Дословно "транскрипция" переводится, как "переписывание".

Последовательность событий транскрипции:

- Расхождение нитей двойной спирали ДНК, как испорченной застежки – молнии. При этом "старые" водородные связи между комплементарно спаренными азотистыми основаниями параллельных цепочек разрываются и цепочки отходят друг от друга. Формируется «репликационный глазок» - ДНК разрываются не с конца молекулы, а с любого участка.

- Свободные рибонуклеотиды комплементарно спариваются с освободившимися на ДНК азотистыми основаниями нуклеотидов "новыми" водородными связями.

- Фермент РНК-полимераза сшивает рибонуклеотиды ("наживленные" водородными связями) в цепочку м-РНК прочными ковалентными связями.

- Новая и-РНК отходит от участка ДНК, а цепочки ДНК восстанавливают "старые" водородные связи.

Смысл этого процесса — переписывание информации о структуре белка с огромного неподвижного носителя (ДНК в составе хромосомы) на небольшой подвижный носитель - м-РНК. Примерно так же обстоит дело, когда с жесткого диска компьютера, содержащего тысячи файлов, переписывают один из них на флешку. С той лишь разницей, что м-РНК в процессе записи информации образуется из новых нуклеотидов. Следовательно, м-РНК, считанные с разных генов, должны отличаться друг от друга — как отличаются друг от друга сами гены. Другое важное обстоятельство: непосредственный продукт транскрипции гена правильней называть предшественником м-РНК (пре-м-РНК). Дело в том, что новообразованная м-РНК проходит, тут же (в ядре) созревание.

 

Рисунок 1. Транскрипция, процессинг и трансляция.

Второй этап биосинтеза белка - процессинг. При этом пре-м-РНК претерпевает существенную модификацию. В результате процессинга из и-РНК вырезаются "технологические" участки нуклеотидов, не содержащие информацию о строении синтезируемого белка (интроны). Относительно недавно установлено, что эти «обрезки» являются важными участниками регуляции работы клетки (микро-РНК). Далее происходит сшивание (сплайсинг), оставшихся после вырезания участков и-РНК, содержащих информацию о синтезируемом белке (экзоны) и формирование зрелой м-РНК. И лишь после того зрелая м-РНК (видимо, в комплексе со специальными белками) поступает из ядра в цитоплазму.

Тре6тий этап — трансляция: процесс сборки молекул белка из аминокислот на рибосомах по программе, диктуемой м-РНК. Суть этой программы - определение очередности, в которой аминокислоты должны включаться в строящуюся пептидную цепь. Трансляция -. это перевод информации с "языка" нуклеиновых кислот на "язык" белков.

Причем в процессе участвуют не свободные, а активированные аминокислоты: каждая из них связана с транспортной РНК (т-РНК), т. е. находится в виде аминоацил-т РНК (аа-т РНК). Для каждой из 20 аминокислот имеется своя специфическая форма т-РНК, а чаще — даже не одна, а несколько форм.

Рибосомы же играют в трансляции роль молекулярных машин, обеспечивающих правильное взаимодействие участников. В состав рибосомы входят четыре молекулы т. н. рибосомной РНК (р-РНК) — по одной молекуле каждого из 4-х видов р-РНК. Объединяясь с рибосомными белками, они образуют две субъединицы рибосомы и выполняют в них структурную, а также, возможно, каталитическую функции.

Последовательность событий трансляции:

- К рибосомам с помощью т-РНК транспортируются аминокислоты, фиксированные на "черешке клеверного листа" т-РНК.

- Антикодоны т-РНК комплементарно взаимодействуют с триплетными кодонами и-РНК и образуют водородные связи.

- В начале процесса трансляции с активным центром рибосомы связывается инициирующая часть и-РНК. У эукариот инициирующий кодон всех и-РНК всегда кодирует аминокислоту метионин (стартовый кодон АУГ).

- Две соседние молекулы т-РНК, связавшиеся на рибосоме с и-РНК приобретают возможность для образования пептидной связи между аминокислотами, фиксированными на их "черешках".

- После образования пептидной связи первая т-РНК, "отпускает" свою аминокислоту, а сама разрывает водородные связи и уходит с рибосомы в цитоплазму на "охоту" за новой аминокислотой. Вторая т-РНК (с двумя аминокислотами), спаренная с и-РНК, смещается на место первой в рибосоме.

- Следующая т-РНК с третьей аминокислотой образует комплементарные водородные связи с третьим кодоном и-РНК, создавая условия для пептидной связи между второй и третьей аминокислотой. Процесс повторяется и полипептидная цепочка растет.

- Рост полипептидной цепочки продолжается до терминирующего стоп-кодона и-РНК, после которого новый белок покидает рибосому, но он еще н приобрел законченной трехмерной пространственной конформации.

Молекула и-РНК связывается сразу с несколькими рибосомами, формируя полирибосому. Это позволяет синтезировать одновременно несколько одинаковых молекул белка.

Таким образом, в трансляции участвуют РНК трех классов — м-РНК, т-РНК и р-РНК.

Четвертый этап в образовании работоспособных белков называется фолдинг. После окончания трансляции новый белок обычно не функционирует. Он должен приобрести рабочую (третичную или четвертичную) структуру. Этот процесс называется фолдинг (рис. 2).

 

Рисунок 2. Схема фолдинга.

Вместе с тем оказалось, что добавление в среду некоторых белковых фракций клетки значительно облегчает рефолдинг (восстановление активности) денатурированных белков. Отсюда возникло представление о вспомогательных белках (или факторах) фолдинга.

Затем было обнаружено, что данные факторы можно разделить на две группы.

Первая группа - это белки с каталитической активностью, т.е. ферменты фолдинга, или фолдазы. Как и прочие ферменты, они требуются лишь в каталитических количествах, т. е. в концентрациях, на порядки меньших, чем у «обслуживаемых» ими белков.

Вторая группа - т. н. молекулярные шапероны. Полагают, что сюда входят белки с самыми разными механизмами действия. Например, шапероны могут обеспечить белку удобное место для безопасного сворачивания в третичную структуру – «котел с крышкой». Шапероны они требуются в количествах, близких к стехиометрическим, т. е. сравнимых по величине с концентрацией сворачиваемых белков. Они, как и фолдазы, не входят в состав конечных продуктов фолдинга, какими бы сложными олигомерными образованиями эти продукты ни были.

Показательно в связи с этим исходное значение слова «шаперон» в английском языке: это пожилая дама, сопровождающая молодую девушку на балах. Аналогично и молекулярные шапероны: способствуя правильному фолдингу, они как бы впервые выводят «в свет» новосинтезированные белки.

Из предыдущего изложения можно представить, что фолдинг - особенно с участием фолдаз и шаперонов - всегда приводит полипептидную цепь к «правильной», наиболее оптимальной в энергетическом и функциональном отношениях, пространственной структуре.

К сожалению, фолдинг иногда нарушается. Существует группа тяжелых неврологических болезней, которые обусловлены закономерно повторяющимся «неправильным» фолдингом одного, вполне определенного белка.

Данный белок, если он находится в нормальной конформации, называется прионовым белком. Обнаруживается он в мозгу; функция его неизвестна. При ряде заболеваний тот же полипептид оказывается в другой конформации. В последней преобладают участки с бета-структурой, почти отсутствующие в нормальной нативной форме, а молекулы белка имеют повышенную склонность к агрегации. Такой белок называется прионом (от proteinaceous infection particle - белковая инфекционная частица). В данной форме он, видимо, не способен к выполнению своей обычной функции.

Но самое худшее заключается в том, что «неправильная» форма белка вызывает переход в такую же форму и «правильных» форм. Как это происходит, неясно. Возможно, имеет место захват «правильных» молекул агрегатами приона, в результате чего эти молекулы разворачиваются и организуются заново, но по подобию прионов.

Таким образом, прионы в отношении своих исходных молекул играют роль антишаперонов, осуществляющих как бы фолдинг наоборот. Более того, процесс, очевидно, является автокаталитическим: вновь образовавшиеся порции «испорченного» белка начинают «портить» очередные порции нативного белка. Процесс продолжается, пока весь белок не оказывается «испорчен». Болезнь развивается в течение нескольких лет, но неотвратимо приводит к гибели животного или человека.

Как возникают в организме первые порции приона? Иногда, чрезвычайно редко, это происходит спонтанно - в результате ошибки фолдинга. Несколько чаще встречаются мутации, тогда болезнь передается по наследству. Наиболее часто болезнь возникает в результате употребления в пищу тех тканей животного, в которых содержатся прионы. Потому-то данные белки и названы инфекционными частицами.

Их отличает еще одна очень важная особенность - устойчивость к протеазам (в частности пищеварительным ферментам). Это помогает прионам проникать в неизмененном виде из желудочно-кишечного тракта в нервную ткань, где и запускается вышеизложенный автокаталитический процесс.

Все вместе это делает прионы уникальным инфекционным агентом: это, видимо, единственный случай, когда подобный агент лишен нуклеиновой кислоты (белковая инфекция).

Вызываемые прионами болезни. У коров это т. н. губчатая энцефалопатия (BSE - bovine spongiform encephalopathy), или коровье бешенство. Употребление человеком мяса таких коров вызывает болезнь Крейнцфельда-Якоба. Использование в популярной литературе термина «вирус коровьего бешенства» неграмотно. Прионы не вирусы. Кроме того, среди туземцев Новой Гвинеи известна еще одна болезнь той же природы - куру, при которой на лице человека то и дело появляются гримасы, как при смехе. Считают, что куру передается в результате каннибализма. Наконец, у овец болезнь называется почесухой: постоянный зуд заставляет животных все время тереться о твердые предметы. Открытие прионовых болезней позволяет некоторым биологам усомнится в так называемой «центральной догме молекулярной биологии». Определяющей однонаправленность потока информации от нуклеиновых кислот к белкам (ДНК↔РНК→белок).

Регуляция активности генов. Многоклеточный организм человека возникает при слиянии сперматозоида и яйца в единственную клетку – зиготу, содержащую 46 хромосом. Затем из зиготы, путем митотического деления, вырастает полноценный организм из огромного числа разнообразных клеток. В ядре каждой их этих десятков триллионов клеток есть все те же 46 хромосом (46 молекул нуклеопротеидов). При этом последовательность нуклеотидов в ДНК ядра зиготы и ДНК ядра любой клетки (печени, кожи, мозга) одинаковы. Но тогда возникает вопрос, почему клетки нашего организма не похожи друг на друга и почему они выполняют разные функции.

Серьезный шаг по решению этой проблемы был сделан Жакобом и Моно. Они выдвинули гипотезу о том, что у бактерий гены (участки молекулы ДНК, несущие элементарную функционально значимую информацию) работают в клетке не одновременно. Большую часть времени большая часть генов выключена "отдыхает", небольшая часть генов включена "работает". Главный механизм включения и выключения генов Жакоб и Моно связали с понятием о генах-операторах, белках репрессорах и индукторах.

По гипотезе Жакоба-Моно, перед обычным структурным геном находится ген-оператор, обеспечивающий фиксацию фермента РНК-полимеразы (участок для непосредственного присоединения РНК полимеразы называется промотор) и начало транскрипции. Обычно, с геном-оператором связан белок-репрессор и в таком состоянии фермент РНК-полимераза не может связаться с геном оператором и начать считывать информацию структурных генов ДНК (рис. 1).

Рисунок 1. Выключенное (исходное) состояние структурных генов.

 




Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 2602; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.029 сек.